Examples of Graph Analysis
This section provides three examples of how to perform graph analysis with EasyGraph.
To analyze and draw Structural Hole Spanners on the karate club dataset with EasyGraph
>>> from easygraph.datasets import get_graph_karateclub
>>> import easygraph as eg
>>> G = get_graph_karateclub()
>>> # Calculate five shs(Structural Hole Spanners) in G
>>> shs = eg.common_greedy(G, 5)
>>> # Draw the Graph, and the shs is marked by a red star
>>> eg.draw_SHS_center(G, shs)
>>> # Draw CDF curves of "Number of Followers" of SH spanners and ordinary users in G.
>>> eg.plot_Followers(G, shs)
Fundamentals of Graph Properties and Operations
Import EasyGraph, and start with an undirected graph G:
>>> import easygraph as eg
>>> G=eg.Graph()
Add edge (1,2) to the graph:
>>> G.add_edge(1,2)#Add a single edge
>>> G.edges
[(1, 2, {})]
Add more edges to the graph:
>>> G.add_edges([(2, 3), (1, 3), (3, 4), (4, 5)])#Add edges
>>> G.edges
[(1, 2, {}), (1, 3, {}), (2, 3, {}), (3, 4, {}), (4, 5, {})]
Add a node with attributes:
>>> G.add_node('hello world')
>>> G.add_node('Jack', node_attr={
... 'age': 10,
... 'gender': 'M'
... })
>>> G.nodes
{1: {}, 2: {}, 3: {}, 4: {}, 5: {},
'hello world': {},
'Jack': {
'age': 10,
'gender': 'M'
}
}
Remove nodes:
>>> G.remove_nodes(['hello world','Tom','Lily','a','b'])#remove edges
>>> G.nodes
{1: {}, 2: {}, 3: {}, 4: {}, 5: {}}
Remove edges:
>>> G.remove_edge(4,5)
>>> G.edges
[(1, 2, {}), (1, 3, {}), (2, 3, {}), (3, 4, {})]
Advanced Python properties:
>>> print(len(G))#__len__(self)
5
>>> for x in G:#__iter__(self)
... print(x)
1
2
3
4
5
>>> print(G[1])# return list(self._adj[node].keys()) __contains__ __getitem__
{2: {}, 3: {}}
Neighbors of node 2:
>>> for neighbor in G.neighbors(node=2):
... print(neighbor)
...
1
3
Add weighted edges:
>>> G.add_edges([(1,2), (2, 3),(1, 3), (3, 4), (4, 5)], edges_attr=[
... {
... 'weight': 20
... },
... {
... 'weight': 10
... },
... {
... 'weight': 15
... },
... {
... 'weight': 8
... },
... {
... 'weight': 12
... }
... ])#add weighted edges
>>> G.add_node(6)
>>> G.edges
[(1, 2, {'weight': 20}), (1, 3, {'weight': 15}), (2, 3, {'weight': 10}), (3, 4, {'weight': 8}), (4, 5, {'weight': 12})]
>>> G.nodes
{1: {}, 2: {}, 3: {}, 4: {}, 5: {}, 6: {}}
>>> G.adj
{1: {2: {'weight': 20}, 3: {'weight': 15}}, 2: {1: {'weight': 20}, 3: {'weight': 10}}, 3: {2: {'weight': 10}, 1: {'weight': 15}, 4: {'weight': 8}}, 4: {3: {'weight': 8}, 5: {'weight': 12}}, 5: {4: {'weight': 12}}, 6: {}}
Degree and weighted Degree:
>>> G.degree()
{1: 35, 2: 30, 3: 33, 4: 20, 5: 12, 6: 0}
>>> G.degree(weight='weight')
{1: 35, 2: 30, 3: 33, 4: 20, 5: 12, 6: 0}
Transform each node’s value to its index:
>>> G_index_graph, index_of_node, node_of_index = G.to_index_node_graph()
>>> G_index_graph.adj
{0: {1: {'weight': 20}, 2: {'weight': 15}}, 1: {0: {'weight': 20}, 2: {'weight': 10}}, 2: {0: {'weight': 15}, 1: {'weight': 10}, 3: {'weight': 8}}, 3: {2: {'weight': 8}, 4: {'weight': 12}}, 4: {3: {'weight': 12}}, 5: {}}
>>> index_of_node
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5}
>>> node_of_index
{0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6}
Deep copy of a given graph:
>>> G1 = G.copy()
>>> G1.adj
{1: {2: {'weight': 20}, 3: {'weight': 15}}, 2: {1: {'weight': 20}, 3: {'weight': 10}}, 3: {1: {'weight': 15}, 2: {'weight': 10}, 4: {'weight': 8}}, 4: {3: {'weight': 8}, 5: {'weight': 12}}, 5: {4: {'weight': 12}}, 6: {}}
A subgraph of given nodes:
>>> G_sub = G.nodes_subgraph(from_nodes = [1,2,3])
>>> G_sub.adj
{1: {2: {'weight': 20}, 3: {'weight': 15}}, 2: {1: {'weight': 20}, 3: {'weight': 10}}, 3: {1: {'weight': 15}, 2: {'weight': 10}}}
Egonetwork graph of given node:
>>> ego_network = G.ego_subgraph(center=1)
>>> ego_network.adj
{2: {1: {'weight': 20}, 3: {'weight': 10}}, 1: {2: {'weight': 20}, 3: {'weight': 15}}, 3: {2: {'weight': 10}, 1: {'weight': 15}}}
Connected components:
>>> eg.number_connected_components(G)
2
>>> eg.connected_components(G)
[{6}, {1, 2, 3, 4, 5}]
>>> eg.connected_component_of_node(G, node=3)
{1, 2, 3, 4, 5}
Detection of Structural Hole Spanners
Use MaxD for structural hole spanners detection:
>>> M=eg.get_structural_holes_MaxD(G,
... k = 5, # To find the top five structural holes spanners.
... C = [frozenset([1,2,3]), frozenset([4,5,6])] # Two communities
... )
>>> M
[3, 1, 2, 4, 5]
Use HAM for structural hole spanners detection:
>>> top_k_nodes, SH_score, cmnt_labels=eg.get_structural_holes_HAM(G,
... k = 2,
... c = 2,
... ground_truth_labels = [[0], [0], [1], [1], [1]]
... )
AMI
HAM: 1.0
HAM_all: 0.25126693574443504
NMI
HAM: 1.0
HAM_all: 0.43253806776631243
Entropy
HAM: 0.0
HAM_all: 0.38190850097688767
>>> top_k_nodes
[4, 3]
>>> SH_score
{1: 2, 2: 1, 3: 3, 4: 4, 5: 0}
>>> cmnt_labels
{1: 2, 2: 2, 3: 2, 4: 1, 5: 1}
Apply the common greedy algorithm for detecting structural hole spanners:
>>> T=eg.common_greedy(G,
... k = 3,
... c = 1.0,
... weight = 'weight')
>>> T
[3, 5, 2]
Generate a sample graph from the Karate Club dataset:
>>> G=eg.datasets.get_graph_karateclub()
Calculate Burt’s metrics for structural hole spanners
Betweenness of node 3:
>>> eg.ego_betweenness(G,3)
6.5
Effective size of all nodes:
>>> eg.effective_size(G)
{1: 11.75, 2: 4.333333333333333, 3: 5.8, 4: 0.666666666666667, 5: -0.3333333333333335, 6: 0.5, 7: 0.5, 8: -1.0, 9: 1.0, 10: 0.0, 11: -0.3333333333333335, 12: -1.0, 13: -1.0, 14: 0.5999999999999996, 15: -1.0, 16: -1.0, 17: -1.0, 18: -1.0, 19: -1.0, 20: 0.3333333333333335, 21: -1.0, 22: -1.0, 23: -1.0, 24: 1.4, 25: 0.3333333333333335, 26: 0.3333333333333335, 27: -1.0, 28: 1.5, 29: 0.3333333333333335, 30: 0.0, 31: 0.5, 32: 3.0, 33: 7.833333333333333, 34: 13.235294117647058}
Efficiency of all nodes:
>>> eg.efficiency(G)
{1: 0.734375, 2: 0.48148148148148145, 3: 0.58, 4: 0.11111111111111116, 5: -0.11111111111111116, 6: 0.125, 7: 0.125, 8: -0.25, 9: 0.2, 10: 0.0, 11: -0.11111111111111116, 12: -1.0, 13: -0.5, 14: 0.11999999999999993, 15: -0.5, 16: -0.5, 17: -0.5, 18: -0.5, 19: -0.5, 20: 0.11111111111111116, 21: -0.5, 22: -0.5, 23: -0.5, 24: 0.27999999999999997, 25: 0.11111111111111116, 26: 0.11111111111111116, 27: -0.5, 28: 0.375, 29: 0.11111111111111116, 30: 0.0, 31: 0.125, 32: 0.5, 33: 0.6527777777777778, 34: 0.7785467128027681}
Constraint of all nodes:
>>> eg.constraint(G)
{1: 0.15542329764660495, 2: 0.27953510802469134, 3: 0.18517663966049389, 4: 0.39665964720507535, 5: 0.5294174382716048, 6: 0.4774848090277778, 7: 0.4774848090277778, 8: 0.4427115885416667, 9: 0.3036007136678201, 10: 0.5, 11: 0.5294174382716048, 12: 1.0, 13: 0.6225043402777779, 14: 0.32333541666666676, 15: 0.5736795943867743, 16: 0.5736795943867743, 17: 0.78125, 18: 0.590868537808642, 19: 0.5736795943867743, 20: 0.37371935013717417, 21: 0.5736795943867743, 22: 0.590868537808642, 23: 0.5736795943867743, 24: 0.30582372164552096, 25: 0.4598765432098765, 26: 0.4598765432098765, 27: 0.6709018166089966, 28: 0.2850692041522491, 29: 0.3869131530607885, 30: 0.44940900134563627, 31: 0.3460064638600538, 32: 0.24457540369088812, 33: 0.2492233622751933, 34: 0.15641868512110732}
Hierarchy of all nodes:
>>> eg.hierarchy(G)
{1: 0.08754463683694338, 2: 0.1544986992144599, 3: 0.04535921163684897, 4: 0.061067624090107915, 5: 0.07134469342227538, 6: 0.035305086439308436, 7: 0.03530508643930843, 8: 0.0011300905133206085, 9: 0.012305615918292673, 10: 0.0, 11: 0.07134469342227538, 13: 0.006282226820057121, 14: 0.01352163842686084, 15: 0.00037766424272729984, 16: 0.00037766424272729984, 17: 0.0, 18: 0.0014421896477064891, 19: 0.00037766424272729984, 20: 0.0033488184456886283, 21: 0.00037766424272729984, 22: 0.0014421896477064891, 23: 0.00037766424272729984, 24: 0.036897065903971515, 25: 0.024311482691998648, 26: 0.024311482691998648, 27: 0.01960343310353982, 28: 0.0086202479405721, 29: 0.007513545360870802, 30: 0.06689992156538088, 31: 0.01286931837997609, 32: 0.020491542893317758, 33: 0.3259402254099858, 34: 0.2416086531756689}
Optimizing performance with C++
The GraphC class contains most key operations included in the Graph class. e.g. add_node(), add_edges()
EasyGraph also provides three crucial network analysis functions implemented in C++ - multi_source_dijkstra() - betweenness_centrality() - closeness_centrality() - k_core()
Basics of GraphC
Import EasyGraph and initialize a directed graph G_c :
>>> import easygraph as eg
>>> G_c=eg.DiGraphC()
Add edges [(1,2), (2,4), (4,6), (6,5), (3,5), (1,3)] to the graph:
>>> G_c.add_edges([(1,2), (2,4), (4,6), (6,5), (3,5), (1,3)],[{'weight': 2},{'weight': 1},{'weight': 3},{'weight': 1},{'weight': 4},{'weight': 1},])#Add edges with the corresponding edge weights
>>> G_c.edges
[(3, 5, {'weight': 4.0}), (6, 5, {'weight': 1.0}), (4, 6, {'weight': 3.0}), (2, 4, {'weight': 1.0}), (1, 3, {'weight': 1.0}), (1, 2, {'weight': 2.0})]
Retrieve Nodes’ indices:
>>> G_c.node_index # We assign each node a unique id which starts from 0 to n-1 ( n is the number of nodes in your graph)
{1: 0, 2: 1, 4: 2, 6: 3, 5: 4, 3: 5}
Apply the multi_source_dijkstra algorithm with source node 1:
>>> eg.multi_source_dijkstra(G_c, sources=[1], weight="weight") #
[[0.0, 2.0, 3.0, 6.0, 5.0, 1.0]] # The results are returned in the form of nested lists according to the node index from 0 to n-1, where the values of the sublist refer to the shortest paths from source node `1` to other nodes in the graph
Calculating betweenness centrality and closeness centrality:
>>> eg.betweenness_centrality(G_c)
[0.0, 2.0, 3.0, 2.0, 0.0, 1.0]
>>> eg.closeness_centrality(G_c)
[0.0, 0.10000000149011612, 0.20000000298023224, 0.13846154510974884, 0.2631579041481018, 0.20000000298023224]
The k-core function:
>>> eg.k_core(G_c)
[2, 1, 1, 1, 0, 1]
The PageRank algorithm:
>>> eg.pagerank(G_c)
[0.07353112885883649, 0.10478166923491646, 0.16259530606176315, 0.2117369675241203, 0.3425732590854471, 0.10478166923491646]
Usage
The calling syntax and parameter passing of class methods follow the conventions of Python.
For module functions, EasyGraph executes specific code depending on the class of the graph.