Source code for easygraph.datasets.facebook_ego
"""Facebook Ego-Net Dataset
This dataset contains a subset of Facebook’s social network collected from
survey participants in the SNAP EgoNet project. Nodes represent users, and
edges indicate friendship links between them.
Each ego network is centered on a user and includes their friend connections
and friend-to-friend connections. The `.circles` files contain labeled groups
(i.e., communities) of friends identified by the ego user.
This version processes all ego-nets as a single undirected graph. Node features
are not provided. Labels (circles) are optional and not included by default.
Statistics (based on merged graph):
- Nodes: ~4,000+
- Edges: ~88,000+
- Features: None
- Classes: None
Reference:
J. McAuley and J. Leskovec, “Learning to Discover Social Circles in Ego Networks,”
in NIPS, 2012. [https://snap.stanford.edu/data/egonets-Facebook.html]
"""
import os
import easygraph as eg
from easygraph.classes.graph import Graph
from .graph_dataset_base import EasyGraphBuiltinDataset
from .utils import download
from .utils import extract_archive
[docs]
class FacebookEgoNetDataset(EasyGraphBuiltinDataset):
r"""Facebook Ego-Net social network dataset.
Each node is a user, and edges represent friendship. The dataset
includes 10 ego networks centered on different users.
Parameters
----------
raw_dir : str, optional
Directory to store the raw downloaded files. Default: None
force_reload : bool, optional
Whether to re-download and process the dataset. Default: False
verbose : bool, optional
Whether to print detailed processing logs. Default: True
transform : callable, optional
Optional transform to apply on the graph.
Examples
--------
>>> from easygraph.datasets import FacebookEgoNetDataset
>>> dataset = FacebookEgoNetDataset()
>>> g = dataset[0]
>>> print("Nodes:", g.number_of_nodes())
>>> print("Edges:", g.number_of_edges())
"""
def __init__(self, raw_dir=None, force_reload=False, verbose=True, transform=None):
name = "facebook"
url = "https://snap.stanford.edu/data/facebook.tar.gz"
super(FacebookEgoNetDataset, self).__init__(
name=name,
url=url,
raw_dir=raw_dir,
force_reload=force_reload,
verbose=verbose,
transform=transform,
)
[docs]
def process(self):
parent_dir = os.path.join(self.raw_path, "facebook")
g = eg.Graph()
# Iterate over all .edges files in the subdirectory
for filename in os.listdir(parent_dir):
if filename.endswith(".edges"):
edge_file = os.path.join(parent_dir, filename)
with open(edge_file, "r") as f:
for line in f:
u, v = map(int, line.strip().split())
g.add_edge(u, v)
self._g = g
self._num_nodes = g.number_of_nodes()
self._num_edges = g.number_of_edges()
if self.verbose:
print("Finished loading Facebook Ego-Net dataset.")
print(f" NumNodes: {self._num_nodes}")
print(f" NumEdges: {self._num_edges}")
def __getitem__(self, idx):
assert idx == 0, "FacebookEgoNetDataset only contains one merged graph"
return self._g if self._transform is None else self._transform(self._g)
def __len__(self):
return 1
[docs]
def download(self):
r"""Automatically download data and extract it."""
if self.url is not None:
archive_path = os.path.join(self.raw_dir, self.name + ".tar.gz")
download(self.url, path=archive_path)
extract_archive(archive_path, self.raw_path)