Source code for easygraph.functions.community.modularity_max_detection

from easygraph.functions.community.modularity import modularity
from easygraph.utils import *
from easygraph.utils.mapped_queue import MappedQueue


__all__ = ["greedy_modularity_communities"]


[docs]@not_implemented_for("multigraph") def greedy_modularity_communities(G, weight="weight"): """Communities detection via greedy modularity method. Find communities in graph using Clauset-Newman-Moore greedy modularity maximization. This method currently supports the Graph class. Greedy modularity maximization begins with each node in its own community and joins the pair of communities that most increases modularity until no such pair exists. Parameters ---------- G : easygraph.Graph or easygraph.DiGraph weight : string (default : 'weight') The key for edge weight. For undirected graph, it will regard each edge weight as 1. Returns ---------- Yields sets of nodes, one for each community. References ---------- .. [1] Newman, M. E. J. "Networks: An Introduction Oxford Univ." (2010). .. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore. "Finding community structure in very large networks." Physical review E 70.6 (2004): 066111. """ # Count nodes and edges N = len(G.nodes) m = sum(d.get(weight, 1) for u, v, d in G.edges) if N == 0 or m == 0: print("Please input the graph which has at least one edge!") exit() q0 = 1.0 / (2.0 * m) # Map node labels to contiguous integers label_for_node = {i: v for i, v in enumerate(G.nodes)} node_for_label = {label_for_node[i]: i for i in range(N)} # Calculate degrees k_for_label = G.degree(weight=weight) k = [k_for_label[label_for_node[i]] for i in range(N)] # Initialize community and merge lists communities = {i: frozenset([i]) for i in range(N)} merges = [] # Initial modularity partition = [[label_for_node[x] for x in c] for c in communities.values()] q_cnm = modularity(G, partition) # Initialize data structures # CNM Eq 8-9 (Eq 8 was missing a factor of 2 (from A_ij + A_ji) # a[i]: fraction of edges within community i # dq_dict[i][j]: dQ for merging community i, j # dq_heap[i][n] : (-dq, i, j) for communitiy i nth largest dQ # H[n]: (-dq, i, j) for community with nth largest max_j(dQ_ij) a = [k[i] * q0 for i in range(N)] dq_dict = { i: { j: 2 * q0 - 2 * k[i] * k[j] * q0 * q0 for j in [node_for_label[u] for u in G.neighbors(label_for_node[i])] if j != i } for i in range(N) } dq_heap = [ MappedQueue([(-dq, i, j) for j, dq in dq_dict[i].items()]) for i in range(N) ] H = MappedQueue([dq_heap[i].h[0] for i in range(N) if len(dq_heap[i]) > 0]) # Merge communities until we can't improve modularity while len(H) > 1: # Find best merge # Remove from heap of row maxes # Ties will be broken by choosing the pair with lowest min community id try: dq, i, j = H.pop() except IndexError: break dq = -dq # Remove best merge from row i heap dq_heap[i].pop() # Push new row max onto H if len(dq_heap[i]) > 0: H.push(dq_heap[i].h[0]) # If this element was also at the root of row j, we need to remove the # duplicate entry from H if dq_heap[j].h[0] == (-dq, j, i): H.remove((-dq, j, i)) # Remove best merge from row j heap dq_heap[j].remove((-dq, j, i)) # Push new row max onto H if len(dq_heap[j]) > 0: H.push(dq_heap[j].h[0]) else: # Duplicate wasn't in H, just remove from row j heap dq_heap[j].remove((-dq, j, i)) # Stop when change is non-positive if dq <= 0: break # Perform merge communities[j] = frozenset(communities[i] | communities[j]) del communities[i] merges.append((i, j, dq)) # New modularity q_cnm += dq # Get list of communities connected to merged communities i_set = set(dq_dict[i].keys()) j_set = set(dq_dict[j].keys()) all_set = (i_set | j_set) - {i, j} both_set = i_set & j_set # Merge i into j and update dQ for k in all_set: # Calculate new dq value if k in both_set: dq_jk = dq_dict[j][k] + dq_dict[i][k] elif k in j_set: dq_jk = dq_dict[j][k] - 2.0 * a[i] * a[k] else: # k in i_set dq_jk = dq_dict[i][k] - 2.0 * a[j] * a[k] # Update rows j and k for row, col in [(j, k), (k, j)]: # Save old value for finding heap index if k in j_set: d_old = (-dq_dict[row][col], row, col) else: d_old = None # Update dict for j,k only (i is removed below) dq_dict[row][col] = dq_jk # Save old max of per-row heap if len(dq_heap[row]) > 0: d_oldmax = dq_heap[row].h[0] else: d_oldmax = None # Add/update heaps d = (-dq_jk, row, col) if d_old is None: # We're creating a new nonzero element, add to heap dq_heap[row].push(d) else: # Update existing element in per-row heap dq_heap[row].update(d_old, d) # Update heap of row maxes if necessary if d_oldmax is None: # No entries previously in this row, push new max H.push(d) else: # We've updated an entry in this row, has the max changed? if dq_heap[row].h[0] != d_oldmax: H.update(d_oldmax, dq_heap[row].h[0]) # Remove row/col i from matrix i_neighbors = dq_dict[i].keys() for k in i_neighbors: # Remove from dict dq_old = dq_dict[k][i] del dq_dict[k][i] # Remove from heaps if we haven't already if k != j: # Remove both row and column for row, col in [(k, i), (i, k)]: # Check if replaced dq is row max d_old = (-dq_old, row, col) if dq_heap[row].h[0] == d_old: # Update per-row heap and heap of row maxes dq_heap[row].remove(d_old) H.remove(d_old) # Update row max if len(dq_heap[row]) > 0: H.push(dq_heap[row].h[0]) else: # Only update per-row heap dq_heap[row].remove(d_old) del dq_dict[i] # Mark row i as deleted, but keep placeholder dq_heap[i] = MappedQueue() # Merge i into j and update a a[j] += a[i] a[i] = 0 communities = [ frozenset(label_for_node[i] for i in c) for c in communities.values() ] return sorted(communities, key=len, reverse=True)