Source code for easygraph.functions.hypergraph.assortativity

"""Algorithms for finding the degree assortativity of a hypergraph."""

import random

from itertools import combinations

import numpy
import numpy as np

from easygraph.utils.exception import EasyGraphError


__all__ = ["dynamical_assortativity", "degree_assortativity"]


[docs]def dynamical_assortativity(H): """Computes the dynamical assortativity of a uniform hypergraph. Parameters ---------- H : eg.Hypergraph Hypergraph of interest Returns ------- float The dynamical assortativity See Also -------- degree_assortativity Raises ------ EasyGraphError If the hypergraph is not uniform, or if there are no nodes or no edges References ---------- Nicholas Landry and Juan G. Restrepo, Hypergraph assortativity: A dynamical systems perspective, Chaos 2022. DOI: 10.1063/5.0086905 """ if len(H.v) == 0: raise EasyGraphError("Hypergraph must contain nodes") elif len(H.e[0]) == 0: raise EasyGraphError("Hypergraph must contain edges!") if not H.is_uniform(): raise EasyGraphError("Hypergraph must be uniform!") if 1 in H.unique_edge_sizes(): raise EasyGraphError("No singleton edges!") degs = H.deg_v k1 = sum(degs) / len(degs) k2 = np.mean(numpy.array(degs) ** 2) kk1 = np.mean( [degs[n1] * degs[n2] for e in H.e[0] for n1, n2 in combinations(e, 2)] ) return kk1 * k1**2 / k2**2 - 1
[docs]def degree_assortativity(H, kind="uniform", exact=False, num_samples=1000): """Computes the degree assortativity of a hypergraph Parameters ---------- H : Hypergraph The hypergraph of interest kind : str, optional the type of degree assortativity. valid choices are "uniform", "top-2", and "top-bottom". By default, "uniform". exact : bool, optional whether to compute over all edges or sample randomly from the set of edges. By default, False. num_samples : int, optional if not exact, specify the number of samples for the computation. By default, 1000. Returns ------- float the degree assortativity Raises ------ EasyGraphError If there are no nodes or no edges See Also -------- dynamical_assortativity References ---------- Phil Chodrow, Configuration models of random hypergraphs, Journal of Complex Networks 2020. DOI: 10.1093/comnet/cnaa018 """ if len(H.v) == 0: raise EasyGraphError("Hypergraph must contain nodes") elif len(H.e[0]) == 0: raise EasyGraphError("Hypergraph must contain edges!") degs = H.deg_v if exact: k1k2 = [_choose_degrees(e, degs, kind) for e in H.e[0] if len(e) > 1] else: edges = [e for e in H.e[0] if len(e) > 1] k1k2 = [ _choose_degrees(random.choice(H.e[0]), degs, kind) for _ in range(num_samples) ] rho = np.corrcoef(np.array(k1k2).T)[0, 1] if np.isnan(rho): return 0 return rho
def _choose_degrees(e, k, kind="uniform"): """Choose the degrees of two nodes in a hyperedge. Parameters ---------- e : iterable the members in a hyperedge k : dict the degrees where keys are node IDs and values are degrees kind : str, optional the type of degree assortativity, options are "uniform", "top-2", and "top-bottom". By default, "uniform". Returns ------- tuple two degrees selected from the edge Raises ------ EasyGraphError if invalid assortativity function chosen See Also -------- degree_assortativity References ---------- Phil Chodrow, Configuration models of random hypergraphs, Journal of Complex Networks 2020. DOI: 10.1093/comnet/cnaa018 """ e = list(e) if len(e) > 1: if kind == "uniform": i = np.random.randint(len(e)) j = i while i == j: j = np.random.randint(len(e)) return (k[e[i]], k[e[j]]) elif kind == "top-2": degs = sorted([k[i] for i in e])[-2:] random.shuffle(degs) return degs elif kind == "top-bottom": # this selects the largest and smallest degrees in one line degs = sorted([k[i] for i in e])[:: len(e) - 1] random.shuffle(degs) return degs else: raise EasyGraphError("Invalid choice function!") else: raise EasyGraphError("Edge must have more than one member!")