[docs]classHNHN(nn.Module):r"""The HNHN model proposed in `HNHN: Hypergraph Networks with Hyperedge Neurons <https://arxiv.org/pdf/2006.12278.pdf>`_ paper (ICML 2020). Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``hid_channels`` (``int``): :math:`C_{hid}` is the number of hidden channels. ``num_classes`` (``int``): The Number of class of the classification task. ``use_bn`` (``bool``): If set to ``True``, use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``, optional): Dropout ratio. Defaults to ``0.5``. """def__init__(self,in_channels:int,hid_channels:int,num_classes:int,use_bn:bool=False,drop_rate:float=0.5,)->None:super().__init__()self.layers=nn.ModuleList()self.layers.append(HNHNConv(in_channels,hid_channels,use_bn=use_bn,drop_rate=drop_rate))self.layers.append(HNHNConv(hid_channels,num_classes,use_bn=use_bn,is_last=True))