Source code for easygraph.model.hypergraphs.hypergcn

import torch
import torch.nn as nn

from easygraph.classes import Graph
from easygraph.nn import HyperGCNConv


[docs] class HyperGCN(nn.Module): r"""The HyperGCN model proposed in `HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs <https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf>`_ paper (NeurIPS 2019). Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``hid_channels`` (``int``): :math:`C_{hid}` is the number of hidden channels. ``num_classes`` (``int``): The Number of class of the classification task. ``use_mediator`` (``str``): Whether to use mediator to transform the hyperedges to edges in the graph. Defaults to ``False``. ``fast`` (``bool``): If set to ``True``, the transformed graph structure will be computed once from the input hypergraph and vertex features, and cached for future use. Defaults to ``True``. ``drop_rate`` (``float``, optional): Dropout ratio. Defaults to 0.5. """ def __init__( self, in_channels: int, hid_channels: int, num_classes: int, use_mediator: bool = False, use_bn: bool = False, fast: bool = True, drop_rate: float = 0.5, ) -> None: super().__init__() self.fast = fast self.cached_g = None self.with_mediator = use_mediator self.layers = nn.ModuleList() self.layers.append( HyperGCNConv( in_channels, hid_channels, use_mediator, use_bn=use_bn, drop_rate=drop_rate, ) ) self.layers.append( HyperGCNConv( hid_channels, num_classes, use_mediator, use_bn=use_bn, is_last=True ) )
[docs] def forward(self, X: torch.Tensor, hg: "eg.Hypergraph") -> torch.Tensor: r"""The forward function. Parameters: ``X`` (``torch.Tensor``): Input vertex feature matrix. Size :math:`(N, C_{in})`. ``hg`` (``eg.Hypergraph``): The hypergraph structure that contains :math:`N` vertices. """ if self.fast: if self.cached_g is None: self.cached_g = Graph.from_hypergraph_hypergcn( hg, X, self.with_mediator ) for layer in self.layers: X = layer(X, hg, self.cached_g) else: for layer in self.layers: X = layer(X, hg) return X