[docs]classHGNNConv(nn.Module):r"""The HGNN convolution layer proposed in `Hypergraph Neural Networks <https://arxiv.org/pdf/1809.09401>`_ paper (AAAI 2019). Matrix Format: .. math:: \mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} \right). where :math:`\mathbf{X}` is the input vertex feature matrix, :math:`\mathbf{H}` is the hypergraph incidence matrix, :math:`\mathbf{W}_e` is a diagonal hyperedge weight matrix, :math:`\mathbf{D}_v` is a diagonal vertex degree matrix, :math:`\mathbf{D}_e` is a diagonal hyperedge degree matrix, :math:`\mathbf{\Theta}` is the learnable parameters. Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """def__init__(self,in_channels:int,out_channels:int,bias:bool=True,use_bn:bool=False,drop_rate:float=0.5,is_last:bool=False,):super().__init__()self.is_last=is_lastself.bn=nn.BatchNorm1d(out_channels)ifuse_bnelseNoneself.act=nn.ReLU(inplace=True)self.drop=nn.Dropout(drop_rate)self.theta=nn.Linear(in_channels,out_channels,bias=bias)# self.Theta1 = nn.Linear(in_size, hidden_dims)# self.Theta2 = nn.Linear(hidden_dims, out_size)# self.dropout = nn.Dropout(0.5)## ############################################################ # (HIGHLIGHT) Compute the Laplacian with Sparse Matrix API# ############################################################ d_V = H.sum(1) # node degree# d_E = H.sum(0) # edge degree# n_edges = d_E.shape[0]# D_V_invsqrt = dglsp.diag(d_V ** -0.5) # D_V ** (-1/2)# D_E_inv = dglsp.diag(d_E ** -1) # D_E ** (-1)# W = dglsp.identity((n_edges, n_edges))# self.laplacian = D_V_invsqrt @ H @ W @ D_E_inv @ H.T @ D_V_invsqrt
[docs]defforward(self,X:torch.Tensor,hg:Hypergraph)->torch.Tensor:r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(N, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`N` vertices. """X=self.theta(X)ifself.bnisnotNone:X=self.bn(X)X=hg.smoothing_with_HGNN(X)ifnotself.is_last:X=self.drop(self.act(X))returnX