[docs]classHGNNPConv(nn.Module):r"""The HGNN :sup:`+` convolution layer proposed in `HGNN+: General Hypergraph Neural Networks <https://ieeexplore.ieee.org/document/9795251>`_ paper (IEEE T-PAMI 2022). Sparse Format: .. math:: \left\{ \begin{aligned} m_{\beta}^{t} &=\sum_{\alpha \in \mathcal{N}_{v}(\beta)} M_{v}^{t}\left(x_{\alpha}^{t}\right) \\ y_{\beta}^{t} &=U_{e}^{t}\left(w_{\beta}, m_{\beta}^{t}\right) \\ m_{\alpha}^{t+1} &=\sum_{\beta \in \mathcal{N}_{e}(\alpha)} M_{e}^{t}\left(x_{\alpha}^{t}, y_{\beta}^{t}\right) \\ x_{\alpha}^{t+1} &=U_{v}^{t}\left(x_{\alpha}^{t}, m_{\alpha}^{t+1}\right) \\ \end{aligned} \right. Matrix Format: .. math:: \mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-1} \mathbf{H} \mathbf{W}_e \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{X} \mathbf{\Theta} \right). Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """def__init__(self,in_channels:int,out_channels:int,bias:bool=True,use_bn:bool=False,drop_rate:float=0.5,is_last:bool=False,):super().__init__()self.is_last=is_lastself.bn=nn.BatchNorm1d(out_channels)ifuse_bnelseNoneself.act=nn.ReLU(inplace=True)self.drop=nn.Dropout(drop_rate)self.theta=nn.Linear(in_channels,out_channels,bias=bias)
[docs]defforward(self,X:torch.Tensor,hg:Hypergraph)->torch.Tensor:r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """X=self.theta(X)ifself.bnisnotNone:X=self.bn(X)X=hg.v2v(X,aggr="mean")ifnotself.is_last:X=self.drop(self.act(X))returnX