Source code for easygraph.nn.convs.hypergraphs.unignn_conv

import torch
import torch.nn as nn

from easygraph.classes import Hypergraph


[docs] class UniGCNConv(nn.Module): r"""The UniGCN convolution layer proposed in `UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks <https://arxiv.org/pdf/2105.00956.pdf>`_ paper (IJCAI 2021). Sparse Format: .. math:: \left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= \frac{1}{\sqrt{d_{i}}} \sum_{e \in \tilde{E}_{i}} \frac{1}{\sqrt{\tilde{d}_{e}}} W h_{e} \end{aligned} \right. . where :math:`\tilde{d}_{e} = \frac{1}{|e|} \sum_{i \in e} d_{i}`. Matrix Format: .. math:: \mathbf{X}^{\prime} = \sigma \left( \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H} \tilde{\mathbf{D}}_e^{-\frac{1}{2}} \cdot \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{X} \mathbf{\Theta} \right) . Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """ def __init__( self, in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False, ): super().__init__() self.is_last = is_last self.bn = nn.BatchNorm1d(out_channels) if use_bn else None self.act = nn.ReLU(inplace=True) self.drop = nn.Dropout(drop_rate) self.theta = nn.Linear(in_channels, out_channels, bias=bias)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor: r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """ X = self.theta(X) # import time # start = time.time() Y = hg.v2e(X, aggr="mean") # end = time.time() # print("eg v2e:",end-start) # =============================================== # compute the special degree of hyperedges _De = torch.zeros(hg.num_e, device=hg.device) # scatter_reduce() is relay on the torch 1.12.1, which may be updated in the future # print("hg.v2e_dst:",hg.v2e_dst) # start = time.time() _De = _De.scatter_reduce( 0, index=hg.v2e_dst, src=hg.D_v._values()[hg.v2e_src], reduce="mean" ) # end = time.time() # print("eg scatter:",end-start) _De = _De.pow(-0.5) _De[_De.isinf()] = 1 Y = _De.view(-1, 1) * Y # =============================================== X = hg.e2v(Y, aggr="sum") X = torch.sparse.mm(hg.D_v_neg_1_2, X) if not self.is_last: X = self.act(X) if self.bn is not None: X = self.bn(X) X = self.drop(X) return X
[docs] class UniGATConv(nn.Module): r"""The UniGAT convolution layer proposed in `UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks <https://arxiv.org/pdf/2105.00956.pdf>`_ paper (IJCAI 2021). Sparse Format: .. math:: \left\{ \begin{aligned} \alpha_{i e} &=\sigma\left(a^{T}\left[W h_{\{i\}} ; W h_{e}\right]\right) \\ \tilde{\alpha}_{i e} &=\frac{\exp \left(\alpha_{i e}\right)}{\sum_{e^{\prime} \in \tilde{E}_{i}} \exp \left(\alpha_{i e^{\prime}}\right)} \\ \tilde{x}_{i} &=\sum_{e \in \tilde{E}_{i}} \tilde{\alpha}_{i e} W h_{e} \end{aligned} \right. . Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): The dropout probability. If ``dropout <= 0``, the layer will not drop values. Defaults to ``0.5``. ``atten_neg_slope`` (``float``): Hyper-parameter of the ``LeakyReLU`` activation of edge attention. Defaults to ``0.2``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """ def __init__( self, in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, atten_neg_slope: float = 0.2, is_last: bool = False, ): super().__init__() self.is_last = is_last self.bn = nn.BatchNorm1d(out_channels) if use_bn else None self.atten_dropout = nn.Dropout(drop_rate) self.atten_act = nn.LeakyReLU(atten_neg_slope) self.act = nn.ELU(inplace=True) self.theta = nn.Linear(in_channels, out_channels, bias=bias) self.atten_e = nn.Linear(out_channels, 1, bias=False) self.atten_dst = nn.Linear(out_channels, 1, bias=False)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor: r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """ X = self.theta(X) Y = hg.v2e(X, aggr="mean") # =============================================== alpha_e = self.atten_e(Y) e_atten_score = alpha_e[hg.e2v_src] e_atten_score = self.atten_dropout(self.atten_act(e_atten_score).squeeze()) # ================================================================================ # We suggest to add a clamp on attention weight to avoid Nan error in training. e_atten_score.clamp_(min=0.001, max=5) # e_atten_score = torch.clamp(e_atten_score, min=0.001, max=5) # ================================================================================ X = hg.e2v(Y, aggr="softmax_then_sum", e2v_weight=e_atten_score) if not self.is_last: X = self.act(X) if self.bn is not None: X = self.bn(X) return X
[docs] class UniSAGEConv(nn.Module): r"""The UniSAGE convolution layer proposed in `UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks <https://arxiv.org/pdf/2105.00956.pdf>`_ paper (IJCAI 2021). Sparse Format: .. math:: \left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= W\left(x_{i}+\text { AGGREGATE }\left(\left\{x_{j}\right\}_{j \in \mathcal{N}_{i}}\right)\right) \end{aligned} \right. . Matrix Format: .. math:: \mathbf{X}^{\prime} = \sigma \left( \left( \mathbf{I} + \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \right) \mathbf{X} \mathbf{\Theta} \right) . Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """ def __init__( self, in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False, ): super().__init__() self.is_last = is_last self.bn = nn.BatchNorm1d(out_channels) if use_bn else None self.act = nn.ReLU(inplace=True) self.drop = nn.Dropout(drop_rate) self.theta = nn.Linear(in_channels, out_channels, bias=bias)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor: r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """ X = self.theta(X) Y = hg.v2e(X, aggr="mean") X = hg.e2v(Y, aggr="sum") + X if not self.is_last: X = self.act(X) if self.bn is not None: X = self.bn(X) X = self.drop(X) return X
[docs] class UniGINConv(nn.Module): r"""The UniGIN convolution layer proposed in `UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks <https://arxiv.org/pdf/2105.00956.pdf>`_ paper (IJCAI 2021). Sparse Format: .. math:: \left\{ \begin{aligned} h_{e} &= \frac{1}{|e|} \sum_{j \in e} x_{j} \\ \tilde{x}_{i} &= W\left((1+\varepsilon) x_{i}+\sum_{e \in E_{i}} h_{e}\right) \end{aligned} \right. . Matrix Format: .. math:: \mathbf{X}^{\prime} = \sigma \left( \left( \left( \mathbf{I} + \varepsilon \right) + \mathbf{H} \mathbf{D}_e^{-1} \mathbf{H}^\top \right) \mathbf{X} \mathbf{\Theta} \right) . Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``eps`` (``float``): :math:`\varepsilon` is the learnable parameter. Defaults to ``0.0``. ``train_eps`` (``bool``): If set to ``True``, the layer will learn the :math:`\varepsilon` parameter. Defaults to ``False``. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """ def __init__( self, in_channels: int, out_channels: int, eps: float = 0.0, train_eps: bool = False, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False, ): super().__init__() self.is_last = is_last if train_eps: self.eps = nn.Parameter(torch.tensor([eps])) else: self.eps = eps self.bn = nn.BatchNorm1d(out_channels) if use_bn else None self.act = nn.ReLU(inplace=True) self.drop = nn.Dropout(drop_rate) self.theta = nn.Linear(in_channels, out_channels, bias=bias)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor: r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """ X = self.theta(X) Y = hg.v2e(X, aggr="mean") X = (1 + self.eps) * hg.e2v(Y, aggr="sum") + X if not self.is_last: X = self.act(X) if self.bn is not None: X = self.bn(X) X = self.drop(X) return X