Source code for easygraph.utils.mapped_queue

"""
Priority queue class with updatable priorities.
Codes from NetworkX - http://networkx.github.io/
"""


import heapq


__all__ = ["MappedQueue"]


[docs]class MappedQueue: """ The MappedQueue class implements an efficient minimum heap. The smallest element can be popped in O(1) time, new elements can be pushed in O(log n) time, and any element can be removed or updated in O(log n) time. The queue cannot contain duplicate elements and an attempt to push an element already in the queue will have no effect. MappedQueue complements the heapq package from the python standard library. While MappedQueue is designed for maximum compatibility with heapq, it has slightly different functionality. Examples -------- A `MappedQueue` can be created empty or optionally given an array of initial elements. Calling `push()` will add an element and calling `pop()` will remove and return the smallest element. >>> q = MappedQueue([916, 50, 4609, 493, 237]) >>> q.push(1310) True >>> x = [q.pop() for i in range(len(q.h))] >>> x [50, 237, 493, 916, 1310, 4609] Elements can also be updated or removed from anywhere in the queue. >>> q = MappedQueue([916, 50, 4609, 493, 237]) >>> q.remove(493) >>> q.update(237, 1117) >>> x = [q.pop() for i in range(len(q.h))] >>> x [50, 916, 1117, 4609] References ---------- .. [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms second edition. .. [2] Knuth, D. E. (1997). The art of computer programming (Vol. 3). Pearson Education. """ def __init__(self, data=[]): """Priority queue class with updatable priorities.""" self.h = list(data) self.d = dict() self._heapify() def __len__(self): return len(self.h) def _heapify(self): """Restore heap invariant and recalculate map.""" heapq.heapify(self.h) self.d = {elt: pos for pos, elt in enumerate(self.h)} if len(self.h) != len(self.d): raise AssertionError("Heap contains duplicate elements")
[docs] def push(self, elt): """Add an element to the queue.""" # If element is already in queue, do nothing if elt in self.d: return False # Add element to heap and dict pos = len(self.h) self.h.append(elt) self.d[elt] = pos # Restore invariant by sifting down self._siftdown(pos) return True
[docs] def pop(self): """Remove and return the smallest element in the queue.""" # Remove smallest element elt = self.h[0] del self.d[elt] # If elt is last item, remove and return if len(self.h) == 1: self.h.pop() return elt # Replace root with last element last = self.h.pop() self.h[0] = last self.d[last] = 0 # Restore invariant by sifting up, then down pos = self._siftup(0) self._siftdown(pos) # Return smallest element return elt
[docs] def update(self, elt, new): """Replace an element in the queue with a new one.""" # Replace pos = self.d[elt] self.h[pos] = new del self.d[elt] self.d[new] = pos # Restore invariant by sifting up, then down pos = self._siftup(pos) self._siftdown(pos)
[docs] def remove(self, elt): """Remove an element from the queue.""" # Find and remove element try: pos = self.d[elt] del self.d[elt] except KeyError: # Not in queue raise # If elt is last item, remove and return if pos == len(self.h) - 1: self.h.pop() return # Replace elt with last element last = self.h.pop() self.h[pos] = last self.d[last] = pos # Restore invariant by sifting up, then down pos = self._siftup(pos) self._siftdown(pos)
def _siftup(self, pos): """Move element at pos down to a leaf by repeatedly moving the smaller child up.""" h, d = self.h, self.d elt = h[pos] # Continue until element is in a leaf end_pos = len(h) left_pos = (pos << 1) + 1 while left_pos < end_pos: # Left child is guaranteed to exist by loop predicate left = h[left_pos] try: right_pos = left_pos + 1 right = h[right_pos] # Out-of-place, swap with left unless right is smaller if right < left: h[pos], h[right_pos] = right, elt pos, right_pos = right_pos, pos d[elt], d[right] = pos, right_pos else: h[pos], h[left_pos] = left, elt pos, left_pos = left_pos, pos d[elt], d[left] = pos, left_pos except IndexError: # Left leaf is the end of the heap, swap h[pos], h[left_pos] = left, elt pos, left_pos = left_pos, pos d[elt], d[left] = pos, left_pos # Update left_pos left_pos = (pos << 1) + 1 return pos def _siftdown(self, pos): """Restore invariant by repeatedly replacing out-of-place element with its parent.""" h, d = self.h, self.d elt = h[pos] # Continue until element is at root while pos > 0: parent_pos = (pos - 1) >> 1 parent = h[parent_pos] if parent > elt: # Swap out-of-place element with parent h[parent_pos], h[pos] = elt, parent parent_pos, pos = pos, parent_pos d[elt] = pos d[parent] = parent_pos else: # Invariant is satisfied break return pos