easygraph.classes package
Submodules
easygraph.classes.base module
easygraph.classes.directed_graph module
- class easygraph.classes.directed_graph.DiGraph(incoming_graph_data=None, **graph_attr)[source]
Bases:
Graph
Base class for directed graphs.
Nodes are allowed for any hashable Python objects, including int, string, dict, etc. Edges are stored as Python dict type, with optional key/value attributes.
- Parameters
graph_attr (keywords arguments, optional (default : None)) – Attributes to add to graph as key=value pairs.
See also
Graph
Examples
Create an empty directed graph with no nodes and edges.
>>> G = eg.DiGraph()
Create a deep copy graph G2 from existing Graph G1.
>>> G2 = G1.copy()
Create an graph with attributes.
>>> G = eg.DiGraph(name='Karate Club', date='2020.08.21')
Attributes:
Returns the adjacency matrix of the graph.
>>> G.adj
Returns all the nodes with their attributes.
>>> G.nodes
Returns all the edges with their attributes.
>>> G.edges
- add_edge(u_of_edge, v_of_edge, **edge_attr)[source]
Add a directed edge.
- Parameters
u_of_edge (object) – The start end of this edge
v_of_edge (object) – The destination end of this edge
edge_attr (keywords arguments, optional) – The attribute of the edge.
Notes
Nodes of this edge will be automatically added to the graph, if they do not exist.
See also
Examples
>>> G.add_edge(1,2) >>> G.add_edge('Jack', 'Tom', weight=10)
Add edge with attributes, edge weight, for example,
>>> G.add_edge(1, 2, **{ ... 'weight': 20 ... })
- add_edges(edges_for_adding, edges_attr: List[Dict] = [])[source]
Add a list of edges.
- Parameters
edges_for_adding (list of 2-element tuple) – The edges for adding. Each element is a (u, v) tuple, and u, v are start end and destination end, respectively.
edges_attr (list of dict, optional) – The corresponding attributes for each edge in edges_for_adding.
Examples
Add a list of edges into G
>>> G.add_edges([ ... (1, 2), ... (3, 4), ... ('Jack', 'Tom') ... ])
Add edge with attributes, for example, edge weight,
>>> G.add_edges([(1,2), (2, 3)], edges_attr=[ ... { ... 'weight': 20 ... }, ... { ... 'weight': 15 ... } ... ])
- add_edges_from(ebunch_to_add, **attr)[source]
Add all the edges in ebunch_to_add.
- Parameters
ebunch_to_add (container of edges) – Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
See also
add_edge
add a single edge
add_weighted_edges_from
convenient way to add weighted edges
Notes
Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
- add_edges_from_file(file, weighted=False)[source]
Added edges from file For example, txt files,
Each line is in form like: a b 23.0 which denotes an edge a → b with weight 23.0.
- Parameters
file (string) – The file path.
weighted (boolean, optional (default : False)) – If the file consists of weight information, set True. The weight key will be set as ‘weight’.
Examples
If ./club_network.txt is:
Jack Mary 23.0
Mary Tom 15.0
Tom Ben 20.0
Then add them to G
>>> G.add_edges_from_file(file='./club_network.txt', weighted=True)
- add_node(node_for_adding, **node_attr)[source]
Add one node
Add one node, type of which is any hashable Python object, such as int, string, dict, or even Graph itself. You can add with node attributes using Python dict type.
- Parameters
node_for_adding (any hashable Python object) – Nodes for adding.
node_attr (keywords arguments, optional) – The node attributes. You can customize them with different key-value pairs.
See also
Examples
>>> G.add_node('a') >>> G.add_node('hello world') >>> G.add_node('Jack', age=10)
>>> G.add_node('Jack', **{ ... 'age': 10, ... 'gender': 'M' ... })
- add_nodes(nodes_for_adding: list, nodes_attr: List[Dict] = [])[source]
Add nodes with a list of nodes.
- Parameters
nodes_for_adding (list) –
nodes_attr (list of dict) – The corresponding attribute for each of nodes_for_adding.
See also
Examples
Add nodes with a list of nodes. You can add with node attributes using a list of Python dict type, each of which is the attribute of each node, respectively.
>>> G.add_nodes([1, 2, 'a', 'b']) >>> G.add_nodes(range(1, 200))
>>> G.add_nodes(['Jack', 'Tom', 'Lily'], nodes_attr=[ ... { ... 'age': 10, ... 'gender': 'M' ... }, ... { ... 'age': 11, ... 'gender': 'M' ... }, ... { ... 'age': 10, ... 'gender': 'F' ... } ... ])
- add_nodes_from(nodes_for_adding, **attr)[source]
Add multiple nodes.
- Parameters
nodes_for_adding (iterable container) – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments.
See also
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = eg.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.
>>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = eg.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11
- add_weighted_edge(u_of_edge, v_of_edge, weight)[source]
Add a weighted edge
- Parameters
u_of_edge (start node) –
v_of_edge (end node) –
weight (weight value) –
Examples
Add a weighted edge
>>> G.add_weighted_edge( 1 , 3 , 1.0)
- property adj
Return the adjacency matrix
- adjlist_inner_dict_factory
alias of
dict
- adjlist_outer_dict_factory
alias of
dict
- all_neighbors(node)[source]
Returns an iterator of a node’s neighbors, including both successors and predecessors.
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors, including both successors and predecessors.
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for neighbor in G.all_neighbors(node=2): ... print(neighbor)
- copy()[source]
Return a deep copy of the graph.
- Returns
copy – A deep copy of the original graph.
- Return type
easygraph.DiGraph
Examples
G2 is a deep copy of G1
>>> G2 = G1.copy()
- degree(weight='weight')[source]
Returns the weighted degree of each node, i.e. sum of out/in degree.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
degree – Each node’s (key) weighted in degree (value). For directed graph, it returns the sum of out degree and in degree.
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
See also
Examples
>>> G.degree() >>> G.degree(weight='weight')
or you can customize the weight key
>>> G.degree(weight='weight_1')
- edge_attr_dict_factory
alias of
dict
- property edges
Return an edge list
- ego_subgraph(center)[source]
Returns an ego network graph of a node.
- Parameters
center (object) – The center node of the ego network graph
- Returns
ego_subgraph – The ego network graph of center.
- Return type
easygraph.Graph
Examples
>>> G = eg.Graph() >>> G.add_edges([ ... ('Jack', 'Maria'), ... ('Maria', 'Andy'), ... ('Jack', 'Tom') ... ]) >>> G.ego_subgraph(center='Jack')
- gnn_data_dict_factory
alias of
dict
- graph_attr_dict_factory
alias of
dict
- has_edge(u, v)[source]
Returns whether an edge exists
- Parameters
u (start node) –
v (end node) –
- Returns
Bool
- Return type
True (exist) or False (not exists)
- has_node(node)[source]
Returns whether a node exists
- Parameters
node –
- Returns
Bool
- Return type
True (exist) or False (not exists)
- in_degree(weight='weight')[source]
Returns the weighted in degree of each node.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
in_degree – Each node’s (key) weighted in degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
See also
Examples
>>> G.in_degree(weight='weight')
- property index2node
Assign an integer index for each node (start from 0)
- property name
String identifier of the graph.
This graph attribute appears in the attribute dict G.graph keyed by the string “name”. as well as an attribute (technically a property) G.name. This is entirely user controlled.
- nbunch_iter(nbunch=None)[source]
Returns an iterator over nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
- Parameters
nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.
- Returns
niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.
- Return type
iterator
- Raises
EasyGraphError – If nbunch is not a node or sequence of nodes. If a node in nbunch is not hashable.
See also
Graph.__iter__
Notes
When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a
EasyGraphError
is raised. Also, if any object in nbunch is not hashable, aEasyGraphError
is raised.
- property ndata
- neighbors(node)[source]
Returns an iterator of a node’s neighbors (successors).
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors (successors).
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for neighbor in G.neighbors(node=2): ... print(neighbor)
- node_attr_dict_factory
alias of
dict
- node_dict_factory
alias of
dict
- property node_index
Assign an integer index for each node (start from 0)
- node_index_dict
alias of
dict
- property nodes
return [node for node in self._node]
- nodes_subgraph(from_nodes: list)[source]
Returns a subgraph of some nodes
- Parameters
from_nodes (list of object) – The nodes in subgraph.
- Returns
nodes_subgraph – The subgraph consisting of from_nodes.
- Return type
easygraph.Graph
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4), (4,5)]) >>> G_sub = G.nodes_subgraph(from_nodes= [1,2,3])
- number_of_edges(u=None, v=None)[source]
Returns the number of edges between two nodes.
- Parameters
u (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
v (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
- Returns
nedges – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.
- Return type
int
See also
Examples
For undirected graphs, this method counts the total number of edges in the graph:
>>> G = eg.path_graph(4) >>> G.number_of_edges() 3
If you specify two nodes, this counts the total number of edges joining the two nodes:
>>> G.number_of_edges(0, 1) 1
For directed graphs, this method can count the total number of directed edges from u to v:
>>> G = eg.DiGraph() >>> G.add_edge(0, 1) >>> G.add_edge(1, 0) >>> G.number_of_edges(0, 1) 1
- number_of_nodes()[source]
Returns the number of nodes.
- Returns
number_of_nodes – The number of nodes.
- Return type
int
- out_degree(weight='weight')[source]
Returns the weighted out degree of each node.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
out_degree – Each node’s (key) weighted out degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
Examples
>>> G.out_degree(weight='weight')
- property pred
Return the pred of each node
- predecessors(node)[source]
Returns an iterator of a node’s neighbors (predecessors).
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors (predecessors).
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for predecessor in G.predecessors(node=2): ... print(predecessor)
- remove_edge(u, v)[source]
Remove one edge from your graph.
- Parameters
u (object) – The start end of the edge.
v (object) – The destination end of the edge.
See also
Examples
Remove edge (1,2) from G
>>> G.remove_edge(1,2)
- remove_edges(edges_to_remove: [<class 'tuple'>])[source]
Remove a list of edges from your graph.
- Parameters
edges_to_remove (list of tuple) – The list of edges you want to remove, Each element is (u, v) tuple, which denote the start and destination end of the edge, respectively.
See also
Examples
Remove the edges (‘Jack’, ‘Mary’) amd (‘Mary’, ‘Tom’) from G
>>> G.remove_edge([ ... ('Jack', 'Mary'), ... ('Mary', 'Tom') ... ])
- remove_edges_from(ebunch)[source]
Remove all edges specified in ebunch.
- Parameters
ebunch (list or container of edge tuples) –
Each edge given in the list or container will be removed from the graph. The edges can be:
2-tuples (u, v) edge between u and v.
3-tuples (u, v, k) where k is ignored.
See also
remove_edge
remove a single edge
Notes
Will fail silently if an edge in ebunch is not in the graph.
Examples
>>> G = eg.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch = [(1, 2), (2, 3)] >>> G.remove_edges_from(ebunch)
- remove_node(node_to_remove)[source]
Remove one node from your graph.
- Parameters
node_to_remove (object) – The node you want to remove.
See also
Examples
Remove node Jack from G
>>> G.remove_node('Jack')
- remove_nodes(nodes_to_remove: list)[source]
Remove nodes from your graph.
- Parameters
nodes_to_remove (list of object) – The list of nodes you want to remove.
See also
Examples
Remove node [1, 2, ‘a’, ‘b’] from G
>>> G.remove_nodes([1, 2, 'a', 'b'])
- size(weight=None)[source]
Returns the number of edges or total of all edge weights.
- Parameters
weight (String or None, optional) – The weight key. If None, it will calculate the number of edges, instead of total of all edge weights.
- Returns
size – The number of edges or total of all edge weights.
- Return type
int or float, optional (default: None)
Examples
Returns the number of edges in G:
>>> G.size()
Returns the total of all edge weights in G:
>>> G.size(weight='weight')
- successors(node)
Returns an iterator of a node’s neighbors (successors).
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors (successors).
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for neighbor in G.neighbors(node=2): ... print(neighbor)
- to_index_node_graph(begin_index=0)[source]
Returns a deep copy of graph, with each node switched to its index.
Considering that the nodes of your graph may be any possible hashable Python object, you can get an isomorphic graph of the original one, with each node switched to its index.
- Parameters
begin_index (int) – The begin index of the index graph.
- Returns
G (easygraph.Graph) – Deep copy of graph, with each node switched to its index.
index_of_node (dict) – Index of node
node_of_index (dict) – Node of index
Examples
The following method returns this isomorphic graph and index-to-node dictionary as well as node-to-index dictionary.
>>> G = eg.Graph() >>> G.add_edges([ ... ('Jack', 'Maria'), ... ('Maria', 'Andy'), ... ('Jack', 'Tom') ... ]) >>> G_index_graph, index_of_node, node_of_index = G.to_index_node_graph()
easygraph.classes.directed_multigraph module
- class easygraph.classes.directed_multigraph.MultiDiGraph(incoming_graph_data=None, multigraph_input=None, **attr)[source]
Bases:
MultiGraph
,DiGraph
- add_edge(u_for_edge, v_for_edge, key=None, **attr)[source]
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See examples below.
- Parameters
u_for_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
v_for_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
- Return type
The edge key assigned to the edge.
See also
add_edges_from
add a collection of edges
Notes
To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.
EasyGraph algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph algorithms.
Default keys are generated using the method new_edge_key(). This method can be overridden by subclassing the base class and providing a custom new_edge_key() method.
Examples
The following all add the edge e=(1, 2) to graph G:
>>> G = eg.MultiDiGraph() >>> e = (1, 2) >>> key = G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes 1 >>> G.add_edges_from([(1, 2)]) # add edges from iterable container [2]
Associate data to edges using keywords:
>>> key = G.add_edge(1, 2, weight=3) >>> key = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> key = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> ekey = G.add_edge(1, 2) >>> G[1][2][0].update({0: 5}) >>> G.edges[1, 2, 0].update({0: 5})
>>> >>>
- property degree
Returns the weighted degree of each node, i.e. sum of out/in degree.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
degree – Each node’s (key) weighted in degree (value). For directed graph, it returns the sum of out degree and in degree.
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
See also
Examples
>>> G.degree() >>> G.degree(weight='weight')
or you can customize the weight key
>>> G.degree(weight='weight_1')
- edge_key_dict_factory
alias of
dict
- property edges
Return an edge list
- property in_degree
Returns the weighted in degree of each node.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
in_degree – Each node’s (key) weighted in degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
See also
Examples
>>> G.in_degree(weight='weight')
- property in_edges
- property out_degree
Returns the weighted out degree of each node.
- Parameters
weight (string, optional (default : 'weight')) – Weight key of the original weighted graph.
- Returns
out_degree – Each node’s (key) weighted out degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
Examples
>>> G.out_degree(weight='weight')
- property out_edges
Return an edge list
- remove_edge(u, v, key=None)[source]
Remove an edge between u and v.
- Parameters
u (nodes) – Remove an edge between nodes u and v.
v (nodes) – Remove an edge between nodes u and v.
key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v.
- Raises
EasyGraphError – If there is not an edge between u and v, or if there is no edge with the specified key.
See also
remove_edges_from
remove a collection of edges
Examples
>>> G = eg.MultiDiGraph() >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned [0, 1, 2] >>> G.remove_edge(1, 2) # remove a single (arbitrary) edge
For edges with keys
>>> G = eg.MultiDiGraph() >>> G.add_edge(1, 2, key="first") 'first' >>> G.add_edge(1, 2, key="second") 'second' >>> G.remove_edge(1, 2, key="second")
- reverse(copy=True)[source]
Returns the reverse of the graph.
The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.
- Parameters
copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, the reverse graph is created using a view of the original graph.
- to_undirected(reciprocal=False)[source]
Returns an undirected representation of the multidigraph.
- Parameters
reciprocal (bool (optional)) – If True only keep edges that appear in both directions in the original digraph.
- Returns
G – An undirected graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or (v, u, data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.
- Return type
See also
MultiGraph
,add_edge
,add_edges_from
Notes
This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.
This is in contrast to the similar D=MultiDiGraph(G) which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed MultiDiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiGraph created by this method.
Examples
>>> G = eg.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges) [(0, 1)]
easygraph.classes.graph module
- class easygraph.classes.graph.Graph(incoming_graph_data=None, extra_selfloop=False, **graph_attr)[source]
Bases:
object
Base class for undirected graphs.
Nodes are allowed for any hashable Python objects, including int, string, dict, etc. Edges are stored as Python dict type, with optional key/value attributes.
- Parameters
graph_attr (keywords arguments, optional (default : None)) – Attributes to add to graph as key=value pairs.
See also
DiGraph
Examples
Create an empty undirected graph with no nodes and edges.
>>> G = eg.Graph()
Create a deep copy graph G2 from existing Graph G1.
>>> G2 = G1.copy()
Create an graph with attributes.
>>> G = eg.Graph(name='Karate Club', date='2020.08.21')
Attributes:
Returns the adjacency matrix of the graph.
>>> G.adj
Returns all the nodes with their attributes.
>>> G.nodes
Returns all the edges with their attributes.
>>> G.edges
- property A
Return the adjacency matrix \(\mathbf{A}\) of the sample graph with
torch.sparse_coo_tensor
format. Size \((|\mathcal{V}|, |\mathcal{V}|)\).
- property D_v
Return the diagonal matrix of vertex degree \(\mathbf{D}_v\) with
torch.sparse_coo_tensor
format. Size \((|\mathcal{V}|, |\mathcal{V}|)\).
- property D_v_neg_1_2
Return the normalized diagonal matrix of vertex degree \(\mathbf{D}_v^{-\frac{1}{2}}\) with
torch.sparse_coo_tensor
format. Size \((|\mathcal{V}|, |\mathcal{V}|)\).
- property L_GCN
Return the GCN Laplacian matrix \(\mathcal{L}_{GCN}\) of the graph with
torch.sparse_coo_tensor
format. Size \((|\mathcal{V}|, |\mathcal{V}|)\).\[\mathcal{L}_{GCN} = \mathbf{\hat{D}}_v^{-\frac{1}{2}} \mathbf{\hat{A}} \mathbf{\hat{D}}_v^{-\frac{1}{2}}\]
- add_edge(u_of_edge, v_of_edge, **edge_attr)[source]
Add one edge.
- Parameters
u_of_edge (object) – One end of this edge
v_of_edge (object) – The other one end of this edge
edge_attr (keywords arguments, optional) – The attribute of the edge.
Notes
Nodes of this edge will be automatically added to the graph, if they do not exist.
See also
Examples
>>> G.add_edge(1,2) >>> G.add_edge('Jack', 'Tom', weight=10)
Add edge with attributes, edge weight, for example,
>>> G.add_edge(1, 2, **{ ... 'weight': 20 ... })
- add_edges(edges_for_adding, edges_attr: List[Dict] = [])[source]
Add a list of edges.
- Parameters
edges_for_adding (list of 2-element tuple) – The edges for adding. Each element is a (u, v) tuple, and u, v are two ends of the edge.
edges_attr (list of dict, optional) – The corresponding attributes for each edge in edges_for_adding.
Examples
Add a list of edges into G
>>> G.add_edges([ ... (1, 2), ... (3, 4), ... ('Jack', 'Tom') ... ])
Add edge with attributes, for example, edge weight,
>>> G.add_edges([(1,2), (2, 3)], edges_attr=[ ... { ... 'weight': 20 ... }, ... { ... 'weight': 15 ... } ... ])
- add_edges_from(ebunch_to_add, **attr)[source]
Add all the edges in ebunch_to_add.
- Parameters
ebunch_to_add (container of edges) – Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
See also
add_edge
add a single edge
add_weighted_edges_from
convenient way to add weighted edges
Notes
Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
- add_edges_from_file(file, weighted=False)[source]
Added edges from file For example, txt files,
Each line is in form like: a b 23.0 which denotes an edge (a, b) with weight 23.0.
- Parameters
file (string) – The file path.
weighted (boolean, optional (default : False)) – If the file consists of weight information, set True. The weight key will be set as ‘weight’.
Examples
If ./club_network.txt is:
Jack Mary 23.0
Mary Tom 15.0
Tom Ben 20.0
Then add them to G
>>> G.add_edges_from_file(file='./club_network.txt', weighted=True)
- add_node(node_for_adding, **node_attr)[source]
Add one node
Add one node, type of which is any hashable Python object, such as int, string, dict, or even Graph itself. You can add with node attributes using Python dict type.
- Parameters
node_for_adding (any hashable Python object) – Nodes for adding.
node_attr (keywords arguments, optional) – The node attributes. You can customize them with different key-value pairs.
See also
Examples
>>> G.add_node('a') >>> G.add_node('hello world') >>> G.add_node('Jack', age=10)
>>> G.add_node('Jack', **{ ... 'age': 10, ... 'gender': 'M' ... })
- add_nodes(nodes_for_adding: list, nodes_attr: List[Dict] = [])[source]
Add nodes with a list of nodes.
- Parameters
nodes_for_adding (list) –
nodes_attr (list of dict) – The corresponding attribute for each of nodes_for_adding.
See also
Examples
Add nodes with a list of nodes. You can add with node attributes using a list of Python dict type, each of which is the attribute of each node, respectively.
>>> G.add_nodes([1, 2, 'a', 'b']) >>> G.add_nodes(range(1, 200))
>>> G.add_nodes(['Jack', 'Tom', 'Lily'], nodes_attr=[ ... { ... 'age': 10, ... 'gender': 'M' ... }, ... { ... 'age': 11, ... 'gender': 'M' ... }, ... { ... 'age': 10, ... 'gender': 'F' ... } ... ])
- add_nodes_from(nodes_for_adding, **attr)[source]
Add multiple nodes.
- Parameters
nodes_for_adding (iterable container) – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments.
See also
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = eg.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.
>>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = eg.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11
- add_weighted_edge(u_of_edge, v_of_edge, weight)[source]
Add a weighted edge
- Parameters
u_of_edge (start node) –
v_of_edge (end node) –
weight (weight value) –
Examples
Add a weighted edge
>>> G.add_weighted_edge( 1 , 3 , 1.0)
- add_weighted_edges_from(ebunch_to_add, weight='weight', **attr)[source]
Add weighted edges in ebunch_to_add with specified weight attr
- Parameters
ebunch_to_add (container of edges) – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number.
weight (string, optional (default= 'weight')) – The attribute name for the edge weights to be added.
attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.
See also
add_edge
add a single edge
add_edges_from
add multiple edges
Notes
Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
- property adj
Return the adjacency matrix
- adjlist_inner_dict_factory
alias of
dict
- adjlist_outer_dict_factory
alias of
dict
- all_neighbors(node)
Returns an iterator of a node’s neighbors.
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors.
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for neighbor in G.neighbors(node=2): ... print(neighbor)
- copy()[source]
Return a deep copy of the graph.
- Returns
copy – A deep copy of the original graph.
- Return type
easygraph.Graph
Examples
G2 is a deep copy of G1
>>> G2 = G1.copy()
- degree(weight='weight')[source]
Returns the weighted degree of of each node.
- Parameters
weight (string, optional (default: 'weight')) – Weight key of the original weighted graph.
- Returns
degree – Each node’s (key) weighted degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
Examples
You can call with no attributes, if ‘weight’ is the weight key:
>>> G.degree()
if you have customized weight key ‘weight_1’.
>>> G.degree(weight='weight_1')
- property e: Tuple[List[List[int]], List[float]]
Return the edge list, weight list and property list in the graph.
- property e_both_side: Tuple[List[List], List[float]]
Return the list of edges including both directions.
- edge_attr_dict_factory
alias of
dict
- property edges
Return an edge list
- ego_subgraph(center)[source]
Returns an ego network graph of a node.
- Parameters
center (object) – The center node of the ego network graph
- Returns
ego_subgraph – The ego network graph of center.
- Return type
easygraph.Graph
Examples
>>> G = eg.Graph() >>> G.add_edges([ ... ('Jack', 'Maria'), ... ('Maria', 'Andy'), ... ('Jack', 'Tom') ... ]) >>> G.ego_subgraph(center='Jack')
- gnn_data_dict_factory
alias of
dict
- graph_attr_dict_factory
alias of
dict
- has_edge(u, v)[source]
Returns whether an edge exists
- Parameters
u (start node) –
v (end node) –
- Returns
Bool
- Return type
True (exist) or False (not exists)
- has_node(node)[source]
Returns whether a node exists
- Parameters
node –
- Returns
Bool
- Return type
True (exist) or False (not exists)
- property index2node
Assign an integer index for each node (start from 0)
- property name
String identifier of the graph.
This graph attribute appears in the attribute dict G.graph keyed by the string “name”. as well as an attribute (technically a property) G.name. This is entirely user controlled.
- nbr_v(v_idx: int) Tuple[List[int], List[float]] [source]
Return a vertex list of the neighbors of the vertex
v_idx
.- Parameters
v_idx (
int
) – The index of the vertex.
- nbunch_iter(nbunch=None)[source]
Returns an iterator over nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
- Parameters
nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.
- Returns
niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.
- Return type
iterator
- Raises
EasyGraphError – If nbunch is not a node or sequence of nodes. If a node in nbunch is not hashable.
See also
Graph.__iter__
Notes
When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a
EasyGraphError
is raised. Also, if any object in nbunch is not hashable, aEasyGraphError
is raised.
- property ndata
- neighbors(node)[source]
Returns an iterator of a node’s neighbors.
- Parameters
node (Hashable) – The target node.
- Returns
neighbors – An iterator of a node’s neighbors.
- Return type
iterator
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4)]) >>> for neighbor in G.neighbors(node=2): ... print(neighbor)
- node_attr_dict_factory
alias of
dict
- node_dict_factory
alias of
dict
- property node_index
Assign an integer index for each node (start from 0)
- node_index_dict
alias of
dict
- property nodes
return [node for node in self._node]
- nodes_subgraph(from_nodes: list)[source]
Returns a subgraph of some nodes
- Parameters
from_nodes (list of object) – The nodes in subgraph.
- Returns
nodes_subgraph – The subgraph consisting of from_nodes.
- Return type
easygraph.Graph
Examples
>>> G = eg.Graph() >>> G.add_edges([(1,2), (2,3), (2,4), (4,5)]) >>> G_sub = G.nodes_subgraph(from_nodes= [1,2,3])
- number_of_edges(u=None, v=None)[source]
Returns the number of edges between two nodes.
- Parameters
u (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
v (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
- Returns
nedges – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.
- Return type
int
See also
Examples
For undirected graphs, this method counts the total number of edges in the graph:
>>> G = eg.path_graph(4) >>> G.number_of_edges() 3
If you specify two nodes, this counts the total number of edges joining the two nodes:
>>> G.number_of_edges(0, 1) 1
For directed graphs, this method can count the total number of directed edges from u to v:
>>> G = eg.DiGraph() >>> G.add_edge(0, 1) >>> G.add_edge(1, 0) >>> G.number_of_edges(0, 1) 1
- number_of_nodes()[source]
Returns the number of nodes.
- Returns
number_of_nodes – The number of nodes.
- Return type
int
- order()[source]
Returns the number of nodes in the graph.
- Returns
nnodes – The number of nodes in the graph.
- Return type
int
See also
number_of_nodes
identical method
__len__
identical method
Examples
>>> G = eg.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.order() 3
- raw_selfloop_dict
alias of
dict
- remove_edge(u, v)[source]
Remove one edge from your graph.
- Parameters
u (object) – One end of the edge.
v (object) – The other end of the edge.
See also
Examples
Remove edge (1,2) from G
>>> G.remove_edge(1,2)
- remove_edges(edges_to_remove: [<class 'tuple'>])[source]
Remove a list of edges from your graph.
- Parameters
edges_to_remove (list of tuple) – The list of edges you want to remove, Each element is (u, v) tuple, which denote the two ends of the edge.
See also
Examples
Remove the edges (‘Jack’, ‘Mary’) and (‘Mary’, ‘Tom’) from G
>>> G.remove_edge([ ... ('Jack', 'Mary'), ... ('Mary', 'Tom') ... ])
- remove_node(node_to_remove)[source]
Remove one node from your graph.
- Parameters
node_to_remove (object) – The node you want to remove.
See also
Examples
Remove node Jack from G
>>> G.remove_node('Jack')
- remove_nodes(nodes_to_remove: list)[source]
Remove nodes from your graph.
- Parameters
nodes_to_remove (list of object) – The list of nodes you want to remove.
See also
Examples
Remove node [1, 2, ‘a’, ‘b’] from G
>>> G.remove_nodes([1, 2, 'a', 'b'])
- remove_nodes_from(nodes)[source]
Remove multiple nodes.
- Parameters
nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.
See also
Examples
>>> G = eg.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes) []
- size(weight=None)[source]
Returns the number of edges or total of all edge weights.
- Parameters
weight (String or None, optional) – The weight key. If None, it will calculate the number of edges, instead of total of all edge weights.
- Returns
size – The number of edges or total of all edge weights.
- Return type
int or float, optional (default: None)
Examples
Returns the number of edges in G:
>>> G.size()
Returns the total of all edge weights in G:
>>> G.size(weight='weight')
- smoothing_with_GCN(X, drop_rate=0.0)[source]
Return the smoothed feature matrix with GCN Laplacian matrix \(\mathcal{L}_{GCN}\).
- Parameters
X (
torch.Tensor
) – Vertex feature matrix. Size \((|\mathcal{V}|, C)\).drop_rate (
float
) – Dropout rate. Randomly dropout the connections in adjacency matrix with probabilitydrop_rate
. Default:0.0
.
- to_directed()[source]
Creates and returns a directed graph from self.
- Returns
G – A directed graph with identical name and nodes. Each undirected edge (u, v, data) in the original graph is replaced by two directed edges (u, v, data) and (v, u, data).
- Return type
Notes
This function returns a deepcopy of the original graph, including all nodes, edges, and graph. As a result, it fully duplicates the data and references in the original graph.
This function differs from D=DiGraph(G) which returns a shallow copy.
For more details on shallow and deep copies, refer to the Python copy module: https://docs.python.org/3/library/copy.html.
Warning: If the original graph is a subclass of Graph using custom dict-like objects for its data structure, those customizations will not be preserved in the DiGraph created by this function.
Examples
Converting an undirected graph to a directed graph:
>>> G = eg.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)]
Creating a deep copy of an already directed graph:
>>> G = eg.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1)]
- to_directed_class()[source]
Returns the class to use for empty directed copies.
If you subclass the base classes, use this to designate what directed class to use for to_directed() copies.
- to_index_node_graph(begin_index=0)[source]
Returns a deep copy of graph, with each node switched to its index.
Considering that the nodes of your graph may be any possible hashable Python object, you can get an isomorphic graph of the original one, with each node switched to its index.
- Parameters
begin_index (int) – The begin index of the index graph.
- Returns
G (easygraph.Graph) – Deep copy of graph, with each node switched to its index.
index_of_node (dict) – Index of node
node_of_index (dict) – Node of index
Examples
The following method returns this isomorphic graph and index-to-node dictionary as well as node-to-index dictionary.
>>> G = eg.Graph() >>> G.add_edges([ ... ('Jack', 'Maria'), ... ('Maria', 'Andy'), ... ('Jack', 'Tom') ... ]) >>> G_index_graph, index_of_node, node_of_index = G.to_index_node_graph()
easygraph.classes.graphviews module
easygraph.classes.hypergraph module
easygraph.classes.multigraph module
Base class for MultiGraph.
- class easygraph.classes.multigraph.MultiGraph(incoming_graph_data=None, multigraph_input=None, **attr)[source]
Bases:
Graph
- add_edge(u_for_edge, v_for_edge, key=None, **attr)[source]
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See examples below.
- Parameters
u_for_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
v_for_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
- Return type
The edge key assigned to the edge.
See also
add_edges_from
add a collection of edges
Notes
To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.
EasyGraph algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph algorithms.
Default keys are generated using the method new_edge_key(). This method can be overridden by subclassing the base class and providing a custom new_edge_key() method.
Examples
The following all add the edge e=(1, 2) to graph G:
>>> G = eg.MultiGraph() >>> e = (1, 2) >>> ekey = G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes 1 >>> G.add_edges_from([(1, 2)]) # add edges from iterable container [2]
Associate data to edges using keywords:
>>> ekey = G.add_edge(1, 2, weight=3) >>> ekey = G.add_edge(1, 2, key=0, weight=4) # update data for key=0 >>> ekey = G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> ekey = G.add_edge(1, 2) >>> G[1][2][0].update({0: 5}) >>> G.edges[1, 2, 0].update({0: 5})
- add_edges_from(ebunch_to_add, **attr)[source]
Add all the edges in ebunch_to_add.
- Parameters
ebunch_to_add (container of edges) –
Each edge given in the container will be added to the graph. The edges can be:
2-tuples (u, v) or
3-tuples (u, v, d) for an edge data dict d, or
3-tuples (u, v, k) for not iterable key k, or
4-tuples (u, v, k, d) for an edge with data and key k
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
- Return type
A list of edge keys assigned to the edges in ebunch.
See also
add_edge
add a single edge
add_weighted_edges_from
convenient way to add weighted edges
Notes
Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.
Default keys are generated using the method
new_edge_key()
. This method can be overridden by subclassing the base class and providing a customnew_edge_key()
method.Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
- copy()[source]
Returns a copy of the graph.
The copy method by default returns an independent shallow copy of the graph and attributes. That is, if an attribute is a container, that container is shared by the original an the copy. Use Python’s copy.deepcopy for new containers.
Notes
All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want.
Deepcopy – A “deepcopy” copies the graph structure as well as all data attributes and any objects they might contain. The entire graph object is new so that changes in the copy do not affect the original object. (see Python’s copy.deepcopy)
Data Reference (Shallow) – For a shallow copy the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. EasyGraph does not provide this level of shallow copy.
Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This is exactly what dict.copy() provides. You can obtain this style copy using:
>>> G = eg.path_graph(5) >>> H = G.copy() >>> H = eg.Graph(G) >>> H = G.__class__(G)
Fresh Data – For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use:
>>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges)
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
- Returns
G – A copy of the graph.
- Return type
See also
to_directed
return a directed copy of the graph.
Examples
>>> G = eg.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy()
- property degree
Returns the weighted degree of of each node.
- Parameters
weight (string, optional (default: 'weight')) – Weight key of the original weighted graph.
- Returns
degree – Each node’s (key) weighted degree (value).
- Return type
dict
Notes
If the graph is not weighted, all the weights will be regarded as 1.
Examples
You can call with no attributes, if ‘weight’ is the weight key:
>>> G.degree()
if you have customized weight key ‘weight_1’.
>>> G.degree(weight='weight_1')
- edge_key_dict_factory
alias of
dict
- property edges
Return an edge list
- get_edge_data(u, v, key=None, default=None)[source]
Returns the attribute dictionary associated with edge (u, v).
This is identical to G[u][v][key] except the default is returned instead of an exception is the edge doesn’t exist.
- Parameters
u (nodes) –
v (nodes) –
default (any Python object (default=None)) – Value to return if the edge (u, v) is not found.
key (hashable identifier, optional (default=None)) – Return data only for the edge with specified key.
- Returns
edge_dict – The edge attribute dictionary.
- Return type
dictionary
Examples
>>> G = eg.MultiGraph() # or MultiDiGraph >>> key = G.add_edge(0, 1, key="a", weight=7) >>> G[0][1]["a"] # key='a' {'weight': 7} >>> G.edges[0, 1, "a"] # key='a' {'weight': 7}
Warning: we protect the graph data structure by making G.edges and G[1][2] read-only dict-like structures. However, you can assign values to attributes in e.g. G.edges[1, 2, ‘a’] or G[1][2][‘a’] using an additional bracket as shown next. You need to specify all edge info to assign to the edge data associated with an edge.
>>> G[0][1]["a"]["weight"] = 10 >>> G.edges[0, 1, "a"]["weight"] = 10 >>> G[0][1]["a"]["weight"] 10 >>> G.edges[1, 0, "a"]["weight"] 10
>>> G = eg.MultiGraph() # or MultiDiGraph >>> G = eg.complete_graph(4, create_using=eg.MultiDiGraph) >>> G.get_edge_data(0, 1) {0: {}} >>> e = (0, 1) >>> G.get_edge_data(*e) # tuple form {0: {}} >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0 0
- has_edge(u, v, key=None)[source]
Returns True if the graph has an edge between nodes u and v.
This is the same as v in G[u] or key in G[u][v] without KeyError exceptions.
- Parameters
u (nodes) – Nodes can be, for example, strings or numbers.
v (nodes) – Nodes can be, for example, strings or numbers.
key (hashable identifier, optional (default=None)) – If specified return True only if the edge with key is found.
- Returns
edge_ind – True if edge is in the graph, False otherwise.
- Return type
bool
Examples
Can be called either using two nodes u, v, an edge tuple (u, v), or an edge tuple (u, v, key).
>>> G = eg.MultiGraph() # or MultiDiGraph >>> G = eg.complete_graph(4, create_using=eg.MultiDiGraph) >>> G.has_edge(0, 1) # using two nodes True >>> e = (0, 1) >>> G.has_edge(*e) # e is a 2-tuple (u, v) True >>> G.add_edge(0, 1, key="a") 'a' >>> G.has_edge(0, 1, key="a") # specify key True >>> e = (0, 1, "a") >>> G.has_edge(*e) # e is a 3-tuple (u, v, 'a') True
The following syntax are equivalent:
>>> G.has_edge(0, 1) True >>> 1 in G[0] # though this gives :exc:`KeyError` if 0 not in G True
- new_edge_key(u, v)[source]
Returns an unused key for edges between nodes u and v.
The nodes u and v do not need to be already in the graph.
Notes
In the standard MultiGraph class the new key is the number of existing edges between u and v (increased if necessary to ensure unused). The first edge will have key 0, then 1, etc. If an edge is removed further new_edge_keys may not be in this order.
- Parameters
u (nodes) –
v (nodes) –
- Returns
key
- Return type
int
- number_of_edges(u=None, v=None)[source]
Returns the number of edges between two nodes.
- Parameters
u (nodes, optional (Gefault=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
v (nodes, optional (Gefault=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
- Returns
nedges – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.
- Return type
int
See also
size
Examples
For undirected multigraphs, this method counts the total number of edges in the graph:
>>> G = eg.MultiGraph() >>> G.add_edges_from([(0, 1), (0, 1), (1, 2)]) [0, 1, 0] >>> G.number_of_edges() 3
If you specify two nodes, this counts the total number of edges joining the two nodes:
>>> G.number_of_edges(0, 1) 2
For directed multigraphs, this method can count the total number of directed edges from u to v:
>>> G = eg.MultiDiGraph() >>> G.add_edges_from([(0, 1), (0, 1), (1, 0)]) [0, 1, 0] >>> G.number_of_edges(0, 1) 2 >>> G.number_of_edges(1, 0) 1
- remove_edge(u, v, key=None)[source]
Remove an edge between u and v.
- Parameters
u (nodes) – Remove an edge between nodes u and v.
v (nodes) – Remove an edge between nodes u and v.
key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v.
- Raises
EasyGraphError – If there is not an edge between u and v, or if there is no edge with the specified key.
See also
remove_edges_from
remove a collection of edges
Examples
For multiple edges
>>> G = eg.MultiGraph() # or MultiDiGraph, etc >>> G.add_edges_from([(1, 2), (1, 2), (1, 2)]) # key_list returned [0, 1, 2] >>> G.remove_edge(1, 2) # remove a single (arbitrary) edge
For edges with keys
>>> G = eg.MultiGraph() # or MultiDiGraph, etc >>> G.add_edge(1, 2, key="first") 'first' >>> G.add_edge(1, 2, key="second") 'second' >>> G.remove_edge(1, 2, key="second")
- remove_edges_from(ebunch)[source]
Remove all edges specified in ebunch.
- Parameters
ebunch (list or container of edge tuples) –
Each edge given in the list or container will be removed from the graph. The edges can be:
2-tuples (u, v) All edges between u and v are removed.
3-tuples (u, v, key) The edge identified by key is removed.
4-tuples (u, v, key, data) where data is ignored.
See also
remove_edge
remove a single edge
Notes
Will fail silently if an edge in ebunch is not in the graph.
Examples
Removing multiple copies of edges
>>> G = eg.MultiGraph() >>> keys = G.add_edges_from([(1, 2), (1, 2), (1, 2)]) >>> G.remove_edges_from([(1, 2), (1, 2)]) >>> list(G.edges()) [(1, 2)] >>> G.remove_edges_from([(1, 2), (1, 2)]) # silently ignore extra copy >>> list(G.edges) # now empty graph []
- to_directed()[source]
Returns a directed representation of the graph.
- Returns
G – A directed graph with the same name, same nodes, and with each edge (u, v, data) replaced by two directed edges (u, v, data) and (v, u, data).
- Return type
Notes
This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.
This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.
Examples
>>> G = eg.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)]
If already directed, return a (deep) copy
>>> G = eg.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1)]
easygraph.classes.operation module
- easygraph.classes.operation.add_path(G_to_add_to, nodes_for_path, **attr)[source]
Add a path to the Graph G_to_add_to.
- Parameters
G_to_add_to (graph) – A EasyGraph graph
nodes_for_path (iterable container) – A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.
See also
add_star
,add_cycle
Examples
>>> G = eg.Graph() >>> eg.add_path(G, [0, 1, 2, 3]) >>> eg.add_path(G, [10, 11, 12], weight=7)
- easygraph.classes.operation.density(G)[source]
Returns the density of a graph.
The density for undirected graphs is
\[d = \frac{2m}{n(n-1)},\]and for directed graphs is
\[d = \frac{m}{n(n-1)},\]where n is the number of nodes and m is the number of edges in G.
Notes
The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1.
Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.
- easygraph.classes.operation.number_of_selfloops(G)[source]
Returns the number of selfloop edges.
A selfloop edge has the same node at both ends.
- Returns
nloops – The number of selfloops.
- Return type
int
See also
nodes_with_selfloops
,selfloop_edges
Examples
>>> G = eg.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge(1, 1) >>> G.add_edge(1, 2) >>> eg.number_of_selfloops(G) 1
- easygraph.classes.operation.selfloop_edges(G, data=False, keys=False, default=None)[source]
Returns an iterator over selfloop edges.
A selfloop edge has the same node at both ends.
- Parameters
G (graph) – A EasyGraph graph.
data (string or bool, optional (default=False)) – Return selfloop edges as two tuples (u, v) (data=False) or three-tuples (u, v, datadict) (data=True) or three-tuples (u, v, datavalue) (data=’attrname’)
keys (bool, optional (default=False)) – If True, return edge keys with each edge.
default (value, optional (default=None)) – Value used for edges that don’t have the requested attribute. Only relevant if data is not True or False.
- Returns
edgeiter – An iterator over all selfloop edges.
- Return type
iterator over edge tuples
See also
nodes_with_selfloops
,number_of_selfloops
Examples
>>> G = eg.MultiGraph() # or Graph, DiGraph, MultiDiGraph, etc >>> ekey = G.add_edge(1, 1) >>> ekey = G.add_edge(1, 2) >>> list(eg.selfloop_edges(G)) [(1, 1)] >>> list(eg.selfloop_edges(G, data=True)) [(1, 1, {})] >>> list(eg.selfloop_edges(G, keys=True)) [(1, 1, 0)] >>> list(eg.selfloop_edges(G, keys=True, data=True)) [(1, 1, 0, {})]
- easygraph.classes.operation.set_edge_attributes(G, values, name=None)[source]
Sets edge attributes from a given value or dictionary of values.
Warning
The call order of arguments values and name switched between v1.x & v2.x.
- Parameters
G (EasyGraph Graph) –
values (scalar value, dict-like) –
What the edge attribute should be set to. If values is not a dictionary, then it is treated as a single attribute value that is then applied to every edge in G. This means that if you provide a mutable object, like a list, updates to that object will be reflected in the edge attribute for each edge. The attribute name will be name.
If values is a dict or a dict of dict, it should be keyed by edge tuple to either an attribute value or a dict of attribute key/value pairs used to update the edge’s attributes. For multigraphs, the edge tuples must be of the form
(u, v, key)
, where u and v are nodes and key is the edge key. For non-multigraphs, the keys must be tuples of the form(u, v)
.name (string (optional, default=None)) – Name of the edge attribute to set if values is a scalar.
Examples
After computing some property of the edges of a graph, you may want to assign a edge attribute to store the value of that property for each edge:
>>> G = eg.path_graph(3) >>> bb = eg.edge_betweenness_centrality(G, normalized=False) >>> eg.set_edge_attributes(G, bb, "betweenness") >>> G.edges[1, 2]["betweenness"] 2.0
If you provide a list as the second argument, updates to the list will be reflected in the edge attribute for each edge:
>>> labels = [] >>> eg.set_edge_attributes(G, labels, "labels") >>> labels.append("foo") >>> G.edges[0, 1]["labels"] ['foo'] >>> G.edges[1, 2]["labels"] ['foo']
If you provide a dictionary of dictionaries as the second argument, the entire dictionary will be used to update edge attributes:
>>> G = eg.path_graph(3) >>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}} >>> eg.set_edge_attributes(G, attrs) >>> G[0][1]["attr1"] 20 >>> G[0][1]["attr2"] 'nothing' >>> G[1][2]["attr2"] 3
Note that if the dict contains edges that are not in G, they are silently ignored:
>>> G = eg.Graph([(0, 1)]) >>> eg.set_edge_attributes(G, {(1, 2): {"weight": 2.0}}) >>> (1, 2) in G.edges() False
- easygraph.classes.operation.set_node_attributes(G, values, name=None)[source]
Sets node attributes from a given value or dictionary of values.
Warning
The call order of arguments values and name switched between v1.x & v2.x.
- Parameters
G (EasyGraph Graph) –
values (scalar value, dict-like) –
What the node attribute should be set to. If values is not a dictionary, then it is treated as a single attribute value that is then applied to every node in G. This means that if you provide a mutable object, like a list, updates to that object will be reflected in the node attribute for every node. The attribute name will be name.
If values is a dict or a dict of dict, it should be keyed by node to either an attribute value or a dict of attribute key/value pairs used to update the node’s attributes.
name (string (optional, default=None)) – Name of the node attribute to set if values is a scalar.
Examples
After computing some property of the nodes of a graph, you may want to assign a node attribute to store the value of that property for each node:
>>> G = eg.path_graph(3) >>> bb = eg.betweenness_centrality(G) >>> isinstance(bb, dict) True >>> eg.set_node_attributes(G, bb, "betweenness") >>> G.nodes[1]["betweenness"] 1.0
If you provide a list as the second argument, updates to the list will be reflected in the node attribute for each node:
>>> G = eg.path_graph(3) >>> labels = [] >>> eg.set_node_attributes(G, labels, "labels") >>> labels.append("foo") >>> G.nodes[0]["labels"] ['foo'] >>> G.nodes[1]["labels"] ['foo'] >>> G.nodes[2]["labels"] ['foo']
If you provide a dictionary of dictionaries as the second argument, the outer dictionary is assumed to be keyed by node to an inner dictionary of node attributes for that node:
>>> G = eg.path_graph(3) >>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}} >>> eg.set_node_attributes(G, attrs) >>> G.nodes[0]["attr1"] 20 >>> G.nodes[0]["attr2"] 'nothing' >>> G.nodes[1]["attr2"] 3 >>> G.nodes[2] {}
Note that if the dictionary contains nodes that are not in G, the values are silently ignored:
>>> G = eg.Graph() >>> G.add_node(0) >>> eg.set_node_attributes(G, {0: "red", 1: "blue"}, name="color") >>> G.nodes[0]["color"] 'red' >>> 1 in G.nodes False