easygraph.datapipe.common module#
- easygraph.datapipe.common.compose_pipes(*pipes: Callable) Callable[source]#
Compose datapipe functions.
- Parameters:
pipes (
Callable) – Datapipe functions to compose.
- easygraph.datapipe.common.to_bool_tensor(X: List | numpy.ndarray | torch.Tensor) torch.BoolTensor[source]#
Convert
List,numpy.ndarray,torch.Tensortotorch.BoolTensor.- Parameters:
X (
Union[List, np.ndarray, torch.Tensor]) – Input.
Examples
>>> import easygraph.datapipe as dd >>> X = [[0.1, 0.2, 0.5], [0.5, 0.2, 0.3], [0.3, 0.2, 0]] >>> dd.to_bool_tensor(X) tensor([[ True, True, True], [ True, True, True], [ True, True, False]])
- easygraph.datapipe.common.to_long_tensor(X: List | numpy.ndarray | torch.Tensor) torch.LongTensor[source]#
Convert
List,numpy.ndarray,torch.Tensortotorch.LongTensor.- Parameters:
X (
Union[List, np.ndarray, torch.Tensor]) – Input.
Examples
>>> import easygraph.datapipe as dd >>> X = [[1, 2, 5], [5, 2, 3], [3, 2, 0]] >>> dd.to_long_tensor(X) tensor([[1, 2, 5], [5, 2, 3], [3, 2, 0]])
- easygraph.datapipe.common.to_tensor(X: list | numpy.ndarray | torch.Tensor | scipy.sparse.csr_matrix) torch.Tensor[source]#
Convert
List,numpy.ndarray,scipy.sparse.csr_matrixtotorch.Tensor.- Parameters:
X (
Union[List, np.ndarray, torch.Tensor, scipy.sparse.csr_matrix]) – Input.
Examples
>>> import easygraph.datapipe as dd >>> X = [[0.1, 0.2, 0.5], [0.5, 0.2, 0.3], [0.3, 0.2, 0]] >>> dd.to_tensor(X) tensor([[0.1000, 0.2000, 0.5000], [0.5000, 0.2000, 0.3000], [0.3000, 0.2000, 0.0000]])