easygraph.datapipe.normalize module#
- easygraph.datapipe.normalize.min_max_scaler(X: Tensor, ft_min: float, ft_max: float) Tensor [source]#
Normalize the input feature matrix with min-max scaling.
- Parameters:
X (
torch.Tensor
) – The input feature.ft_min (
float
) – The minimum value of the output feature.ft_max (
float
) – The maximum value of the output feature.
Examples
>>> import easygraph.datapipe as dd >>> import torch >>> X = torch.tensor([ [0.1, 0.2, 0.5], [0.5, 0.2, 0.3], [0.3, 0.2, 0.0] ]) >>> dd.min_max_scaler(X, -1, 1) tensor([[-0.6000, -0.2000, 1.0000], [ 1.0000, -0.2000, 0.2000], [ 0.2000, -0.2000, -1.0000]])
- easygraph.datapipe.normalize.norm_ft(X: Tensor, ord: int | float | None = None) Tensor [source]#
Normalize the input feature matrix with specified
ord
refer to pytorch’s torch.linalg.norm function.Note
The input feature matrix is expected to be a 1D vector or a 2D tensor with shape (num_samples, num_features).
- Parameters:
X (
torch.Tensor
) – The input feature.ord (
Union[int, float]
, optional) – The order of the norm can be either anint
,float
. Iford
isNone
, the norm is computed with the 2-norm. Defaults toNone
.
Examples
>>> import easygraph.datapipe as dd >>> import torch >>> X = torch.tensor([ [0.1, 0.2, 0.5], [0.5, 0.2, 0.3], [0.3, 0.2, 0] ]) >>> dd.norm_ft(X) tensor([[0.1826, 0.3651, 0.9129], [0.8111, 0.3244, 0.4867], [0.8321, 0.5547, 0.0000]])