easygraph.functions.graph_embedding.deepwalk module#
- easygraph.functions.graph_embedding.deepwalk.deepwalk(G, dimensions=128, walk_length=80, num_walks=10, **skip_gram_params)[source]#
Graph embedding via DeepWalk.
- Parameters:
G (easygraph.Graph or easygraph.DiGraph) –
dimensions (int) – Embedding dimensions, optional(default: 128)
walk_length (int) – Number of nodes in each walk, optional(default: 80)
num_walks (int) – Number of walks per node, optional(default: 10)
skip_gram_params (dict) – Parameters for gensim.models.Word2Vec - do not supply size, it is taken from the dimensions parameter
- Returns:
embedding_vector (dict) – The embedding vector of each node
most_similar_nodes_of_node (dict) – The most similar nodes of each node and its similarity
Examples
>>> deepwalk(G, ... dimensions=128, # The graph embedding dimensions. ... walk_length=80, # Walk length of each random walks. ... num_walks=10, # Number of random walks. ... skip_gram_params = dict( # The skip_gram parameters in Python package gensim. ... window=10, ... min_count=1, ... batch_words=4, ... iter=15 ... ))
References