easygraph.functions.hypergraph.centrality package

Submodules

easygraph.functions.hypergraph.centrality.cycle_ratio module

easygraph.functions.hypergraph.centrality.cycle_ratio.StatisticsAndCalculateIndicators(SmallestCyclesOfNodes, CycLenDict)[source]
easygraph.functions.hypergraph.centrality.cycle_ratio.cycle_ratio_centrality(G)[source]
Parameters:

G (eg.Graph)

Returns:

cycle ratio centrality of each node in G

Return type:

dict

Example

>>> G = eg.Graph()
>>> G.add_edges([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 5), (2, 5)])
>>> cycle_ratio_centrality(G)
{1: 4.083333333333333, 2: 4.083333333333333, 3: 2.6666666666666665, 4: 2.6666666666666665, 5: 1.5}
easygraph.functions.hypergraph.centrality.cycle_ratio.getSmallestCycles(G, NodeGirth, Coreness, DEF_IMPOSSLEN)[source]
easygraph.functions.hypergraph.centrality.cycle_ratio.getandJudgeSimpleCircle(objectList)[source]
easygraph.functions.hypergraph.centrality.cycle_ratio.my_all_shortest_paths(G, source, target)[source]

easygraph.functions.hypergraph.centrality.degree module

easygraph.functions.hypergraph.centrality.degree.hyepergraph_degree_centrality(G)[source]
Parameters:

G (eg.Hypergraph) – The target hypergraph

Returns:

degree centrality of each node in G

Return type:

dict

easygraph.functions.hypergraph.centrality.hypercoreness module

easygraph.functions.hypergraph.centrality.hypercoreness.frequency_based_hypercoreness(h)[source]

The frequency-based hypercoreness of nodes in hypergraph.

h : easygraph.Hypergraph

Returns:

dict

Return type:

Centrality, where keys are node IDs and values are lists of centralities.

References

Mancastroppa, M., Iacopini, I., Petri, G. et al. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat Commun 14, 6223 (2023). https://doi.org/10.1038/s41467-023-41887-2

easygraph.functions.hypergraph.centrality.hypercoreness.size_independent_hypercoreness(h)[source]

The size_independent_hypercoreness of nodes in hypergraph.

Parameters:

h (eg.Hypergraph.)

Returns:

Centrality, where keys are node IDs and values are lists of centralities.

Return type:

dict

References

Mancastroppa, M., Iacopini, I., Petri, G. et al. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat Commun 14, 6223 (2023). https://doi.org/10.1038/s41467-023-41887-2.

easygraph.functions.hypergraph.centrality.s_centrality module

easygraph.functions.hypergraph.centrality.s_centrality.s_betweenness(H, s=1, n_workers=None)[source]

Computes the betweenness centrality for each edge in the hypergraph.

Computes the betweenness centrality for each edge in the hypergraph.

Parameters:
  • H (eg.Hypergraph.) – The hypergraph to compute

  • s (int, optional.)

Returns:

  • dict

  • The keys are the edges and the values are the betweenness centrality.

  • The betweenness centrality for each edge in the hypergraph.

easygraph.functions.hypergraph.centrality.s_centrality.s_closeness(H, s=1, n_workers=None)[source]

Compute the closeness centrality for each edge in the hypergraph.

Parameters:
  • H (eg.Hypergraph.)

  • s (int, optional)

Return type:

dict. The closeness centrality for each edge in the hypergraph. The keys are the edges and the values are the closeness centrality.

easygraph.functions.hypergraph.centrality.s_centrality.s_eccentricity(H, s=1, edges=True, source=None)[source]

The length of the longest shortest path from a vertex $u$ to every other vertex in the s-linegraph. $V$ = set of vertices in the s-linegraph $d$ = shortest path distance

\[\text{s-ecc}(u) = \text{max}\{d(u,v): v \in V\}\]
Parameters:
  • H (eg.Hypergraph)

  • s (int, optional)

  • edges (bool, optional) – Indicates if method should compute edge linegraph (default) or node linegraph.

  • source (str, optional) – Identifier of node or edge of interest for computing centrality

Returns:

returns the s-eccentricity value of the edges(nodes). If source=None a dictionary of values for each s-edge in H is returned. If source then a single value is returned. If the s-linegraph is disconnected, np.inf is returned.

Return type:

dict or float

easygraph.functions.hypergraph.centrality.vector_centrality module

easygraph.functions.hypergraph.centrality.vector_centrality.vector_centrality(H)[source]

The vector centrality of nodes in the line graph of the hypergraph.

Parameters:

H (eg.Hypergraph)

Returns:

Centrality, where keys are node IDs and values are lists of centralities.

Return type:

dict

References

“Vector centrality in hypergraphs”, K. Kovalenko, M. Romance, E. Vasilyeva, D. Aleja, R. Criado, D. Musatov, A.M. Raigorodskii, J. Flores, I. Samoylenko, K. Alfaro-Bittner, M. Perc, S. Boccaletti, https://doi.org/10.1016/j.chaos.2022.112397

Module contents