easygraph.model.hypergraphs.hgnn module#
- class easygraph.model.hypergraphs.hgnn.HGNN(*args: Any, **kwargs: Any)[source]#
Bases:
Module
The HGNN model proposed in Hypergraph Neural Networks paper (AAAI 2019).
- Parameters:
in_channels (
int
) – \(C_{in}\) is the number of input channels.hid_channels (
int
) – \(C_{hid}\) is the number of hidden channels.num_classes (
int
) – The Number of class of the classification task.use_bn (
bool
) – If set toTrue
, use batch normalization. Defaults toFalse
.drop_rate (
float
, optional) – Dropout ratio. Defaults to 0.5.
- forward(X: torch.Tensor, hg: Hypergraph) torch.Tensor [source]#
The forward function.
- Parameters:
X (
torch.Tensor
) – Input vertex feature matrix. Size \((N, C_{in})\).hg (
eg.Hypergraph
) – The hypergraph structure that contains \(N\) vertices.