easygraph.nn.convs.pma module#
- class easygraph.nn.convs.pma.PMA(in_channels, hid_dim, out_channels, num_layers, heads=1, concat=True, negative_slope=0.2, dropout=0.0, bias=False, **kwargs)[source]#
Bases:
MessagePassing
PMA part: Note that in original PMA, we need to compute the inner product of the seed and neighbor nodes. i.e. e_ij = a(Wh_i,Wh_j), where a should be the inner product, h_i is the seed and h_j are neightbor nodes. In GAT, a(x,y) = a^T[x||y]. We use the same logic.
- Attributes:
- decomposed_layers
- explain
Methods
add_module
(name, module)Adds a child module to the current module.
aggregate
(inputs, index[, dim_size, aggr])Aggregates messages from neighbors as \(\square_{j \in \mathcal{N}(i)}\).
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
children
()Returns an iterator over immediate children modules.
cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.edge_update
()Computes or updates features for each edge in the graph.
edge_updater
(edge_index[, size])The initial call to compute or update features for each edge in the graph.
eval
()Sets the module in evaluation mode.
extra_repr
()Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x, edge_index[, size, ...])- param return_attention_weights:
If set to
True
,
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.get_extra_state
()Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
jittable
([typing])Analyzes the
MessagePassing
instance and produces a new jittable module that can be used in combination withtorch.jit.script()
.load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.message
(x_j, alpha_j, index, ptr, size_j)Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
.message_and_aggregate
(edge_index)Fuses computations of
message()
andaggregate()
into a single function.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
propagate
(edge_index[, size])The initial call to start propagating messages.
register_aggregate_forward_hook
(hook)Registers a forward hook on the module.
register_aggregate_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_edge_update_forward_hook
(hook)Registers a forward hook on the module.
register_edge_update_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Registers a post hook to be run after module's
load_state_dict
is called.register_message_and_aggregate_forward_hook
(hook)Registers a forward hook on the module.
register_message_and_aggregate_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_message_forward_hook
(hook)Registers a forward hook on the module.
register_message_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
register_propagate_forward_hook
(hook)Registers a forward hook on the module.
register_propagate_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_state_dict_pre_hook
(hook)These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
Resets all learnable parameters of the module.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.share_memory
()See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
train
([mode])Sets the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.update
(inputs)Updates node embeddings in analogy to \(\gamma_{\mathbf{\Theta}}\) for each node \(i \in \mathcal{V}\).
xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
__call__
explain_message
- aggregate(inputs, index, dim_size=None, aggr='add')[source]#
Aggregates messages from neighbors as \(\square_{j \in \mathcal{N}(i)}\).
Takes in the output of message computation as first argument and any argument which was initially passed to
propagate()
.By default, this function will delegate its call to scatter functions that support “add”, “mean” and “max” operations as specified in
__init__()
by theaggr
argument.
- forward(x, edge_index: Tensor | SparseTensor, size: Tuple[int, int] | None = None, return_attention_weights=None)[source]#
- Parameters:
return_attention_weights (bool, optional) – If set to
True
, will additionally return the tuple(edge_index, attention_weights)
, holding the computed attention weights for each edge. (default:None
)
- message(x_j, alpha_j, index, ptr, size_j)[source]#
Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in
edge_index
. This function can take any argument as input which was initially passed topropagate()
. Furthermore, tensors passed topropagate()
can be mapped to the respective nodes \(i\) and \(j\) by appending_i
or_j
to the variable name, .e.g.x_i
andx_j
.