from functools import partial
from typing import Optional
from easygraph.datapipe import load_from_pickle
from easygraph.datapipe import norm_ft
from easygraph.datapipe import to_bool_tensor
from easygraph.datapipe import to_long_tensor
from easygraph.datapipe import to_tensor
from easygraph.datasets.hypergraph.hypergraph_dataset_base import BaseData
[docs]class CocitationCora(BaseData):
r"""The Co-citation Cora dataset is a citation network dataset for vertex classification task.
More details see the `HyperGCN <https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf>`_ paper.
The content of the Co-citation Cora dataset includes the following:
- ``num_classes``: The number of classes: :math:`7`.
- ``num_vertices``: The number of vertices: :math:`2,708`.
- ``num_edges``: The number of edges: :math:`1,579`.
- ``dim_features``: The dimension of features: :math:`1,433`.
- ``features``: The vertex feature matrix. ``torch.Tensor`` with size :math:`(2,708 \times 1,433)`.
- ``edge_list``: The edge list. ``List`` with length :math:`1,579`.
- ``labels``: The label list. ``torch.LongTensor`` with size :math:`(2,708, )`.
- ``train_mask``: The train mask. ``torch.BoolTensor`` with size :math:`(2,708, )`.
- ``val_mask``: The validation mask. ``torch.BoolTensor`` with size :math:`(2,708, )`.
- ``test_mask``: The test mask. ``torch.BoolTensor`` with size :math:`(2,708, )`.
Args:
``data_root`` (``str``, optional): The ``data_root`` has stored the data. If set to ``None``, this function will auto-download from server and save into the default direction ``~/.dhg/datasets/``. Defaults to ``None``.
"""
def __init__(self, data_root: Optional[str] = None) -> None:
super().__init__("cocitation_cora", data_root)
self._content = {
"num_classes": 7,
"num_vertices": 2708,
"num_edges": 1579,
"dim_features": 1433,
"features": {
"upon": [
{
"filename": "features.pkl",
"md5": "14257c0e24b4eb741b469a351e524785",
}
],
"loader": load_from_pickle,
"preprocess": [to_tensor, partial(norm_ft, ord=1)],
},
"edge_list": {
"upon": [
{
"filename": "edge_list.pkl",
"md5": "e43d1321880c8ecb2260d8fb7effd9ea",
}
],
"loader": load_from_pickle,
},
"labels": {
"upon": [
{
"filename": "labels.pkl",
"md5": "c8d11c452e0be69f79a47dd839279117",
}
],
"loader": load_from_pickle,
"preprocess": [to_long_tensor],
},
"train_mask": {
"upon": [
{
"filename": "train_mask.pkl",
"md5": "111db6c6f986be2908378df7bdca7a9b",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"val_mask": {
"upon": [
{
"filename": "val_mask.pkl",
"md5": "ffab1055193ffb2fe74822bb575d332a",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"test_mask": {
"upon": [
{
"filename": "test_mask.pkl",
"md5": "ffab1055193ffb2fe74822bb575d332a",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
}
[docs]class CocitationCiteseer(BaseData):
r"""The Co-citation Citeseer dataset is a citation network dataset for vertex classification task.
More details see the `HyperGCN <https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf>`_ paper.
The content of the Co-citation Citaseer dataset includes the following:
- ``num_classes``: The number of classes: :math:`6`.
- ``num_vertices``: The number of vertices: :math:`3,327`.
- ``num_edges``: The number of edges: :math:`1,079`.
- ``dim_features``: The dimension of features: :math:`3,703`.
- ``features``: The vertex feature matrix. ``torch.Tensor`` with size :math:`(3,327 \times 3,703)`.
- ``edge_list``: The edge list. ``List`` with length :math:`1,079`.
- ``labels``: The label list. ``torch.LongTensor`` with size :math:`(3,327, )`.
- ``train_mask``: The train mask. ``torch.BoolTensor`` with size :math:`(3,327, )`.
- ``val_mask``: The validation mask. ``torch.BoolTensor`` with size :math:`(3,327, )`.
- ``test_mask``: The test mask. ``torch.BoolTensor`` with size :math:`(3,327, )`.
Args:
``data_root`` (``str``, optional): The ``data_root`` has stored the data. If set to ``None``, this function will auto-download from server and save into the default direction ``~/.dhg/datasets/``. Defaults to ``None``.
"""
def __init__(self, data_root: Optional[str] = None) -> None:
super().__init__("cocitation_citeseer", data_root)
self._content = {
"num_classes": 6,
"num_vertices": 3312,
"num_edges": 1079,
"dim_features": 3703,
"features": {
"upon": [
{
"filename": "features.pkl",
"md5": "1ee0dc89e0d5f5ac9187b55a407683e8",
}
],
"loader": load_from_pickle,
"preprocess": [to_tensor, partial(norm_ft, ord=1)],
},
"edge_list": {
"upon": [
{
"filename": "edge_list.pkl",
"md5": "6687b2e96159c534a424253f536b49ae",
}
],
"loader": load_from_pickle,
},
"labels": {
"upon": [
{
"filename": "labels.pkl",
"md5": "71069f78e83fa85dd6a4b9b6570447c2",
}
],
"loader": load_from_pickle,
"preprocess": [to_long_tensor],
},
"train_mask": {
"upon": [
{
"filename": "train_mask.pkl",
"md5": "3b831318fc3d3e588bead5ba469fe38f",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"val_mask": {
"upon": [
{
"filename": "val_mask.pkl",
"md5": "c22eb5b7493908042c7e039c8bb5a82e",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"test_mask": {
"upon": [
{
"filename": "test_mask.pkl",
"md5": "c22eb5b7493908042c7e039c8bb5a82e",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
}
[docs]class CocitationPubmed(BaseData):
r"""The Co-citation PubMed dataset is a citation network dataset for vertex classification task.
More details see the `HyperGCN <https://papers.nips.cc/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf>`_ paper.
The content of the Co-citation PubMed dataset includes the following:
- ``num_classes``: The number of classes: :math:`3`.
- ``num_vertices``: The number of vertices: :math:`19,717`.
- ``num_edges``: The number of edges: :math:`7,963`.
- ``dim_features``: The dimension of features: :math:`500`.
- ``features``: The vertex feature matrix. ``torch.Tensor`` with size :math:`(19,717 \times 500)`.
- ``edge_list``: The edge list. ``List`` with length :math:`7,963`.
- ``labels``: The label list. ``torch.LongTensor`` with size :math:`(19,717, )`.
- ``train_mask``: The train mask. ``torch.BoolTensor`` with size :math:`(19,717, )`.
- ``val_mask``: The validation mask. ``torch.BoolTensor`` with size :math:`(19,717, )`.
- ``test_mask``: The test mask. ``torch.BoolTensor`` with size :math:`(19,717, )`.
Args:
``data_root`` (``str``, optional): The ``data_root`` has stored the data. If set to ``None``, this function will auto-download from server and save into the default direction ``~/.dhg/datasets/``. Defaults to ``None``.
"""
def __init__(self, data_root: Optional[str] = None) -> None:
super().__init__("cocitation_pubmed", data_root)
self._content = {
"num_classes": 3,
"num_vertices": 19717,
"num_edges": 7963,
"dim_features": 500,
"features": {
"upon": [
{
"filename": "features.pkl",
"md5": "f89502c432ca451156a8235c5efc034e",
}
],
"loader": load_from_pickle,
"preprocess": [to_tensor, partial(norm_ft, ord=1)],
},
"edge_list": {
"upon": [
{
"filename": "edge_list.pkl",
"md5": "c5fbedf63e5be527f200e8c4e0391b00",
}
],
"loader": load_from_pickle,
},
"labels": {
"upon": [
{
"filename": "labels.pkl",
"md5": "c039f778409a15f9b2ceefacad9c2202",
}
],
"loader": load_from_pickle,
"preprocess": [to_long_tensor],
},
"train_mask": {
"upon": [
{
"filename": "train_mask.pkl",
"md5": "81b422937f3adccd89a334d7093b67d7",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"val_mask": {
"upon": [
{
"filename": "val_mask.pkl",
"md5": "10717940ddbfa3e4f6c0b148bb394f79",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
"test_mask": {
"upon": [
{
"filename": "test_mask.pkl",
"md5": "10717940ddbfa3e4f6c0b148bb394f79",
}
],
"loader": load_from_pickle,
"preprocess": [to_bool_tensor],
},
}