easygraph.datasets.hypergraph.cocitation module#
- class easygraph.datasets.hypergraph.cocitation.CocitationCiteseer(data_root: str | None = None)[source]#
Bases:
BaseDataThe Co-citation Citeseer dataset is a citation network dataset for vertex classification task. More details see the HyperGCN paper.
The content of the Co-citation Citaseer dataset includes the following:
num_classes: The number of classes: \(6\).num_vertices: The number of vertices: \(3,312\).num_edges: The number of edges: \(1,079\).dim_features: The dimension of features: \(3,703\).features: The vertex feature matrix.torch.Tensorwith size \((3,312 \times 3,703)\).edge_list: The edge list.Listwith length \(1,079\).labels: The label list.torch.LongTensorwith size \((3,312, )\).train_mask: The train mask.torch.BoolTensorwith size \((3,312, )\).val_mask: The validation mask.torch.BoolTensorwith size \((3,312, )\).test_mask: The test mask.torch.BoolTensorwith size \((3,312, )\).
- Parameters:
data_root (
str, optional) – Thedata_roothas stored the data. If set toNone, this function will auto-download from server and save into the default direction~/.dhg/datasets/. Defaults toNone.
- class easygraph.datasets.hypergraph.cocitation.CocitationCora(data_root: str | None = None)[source]#
Bases:
BaseDataThe Co-citation Cora dataset is a citation network dataset for vertex classification task. More details see the HyperGCN paper.
The content of the Co-citation Cora dataset includes the following:
num_classes: The number of classes: \(7\).num_vertices: The number of vertices: \(2,708\).num_edges: The number of edges: \(1,579\).dim_features: The dimension of features: \(1,433\).features: The vertex feature matrix.torch.Tensorwith size \((2,708 \times 1,433)\).edge_list: The edge list.Listwith length \(1,579\).labels: The label list.torch.LongTensorwith size \((2,708, )\).train_mask: The train mask.torch.BoolTensorwith size \((2,708, )\).val_mask: The validation mask.torch.BoolTensorwith size \((2,708, )\).test_mask: The test mask.torch.BoolTensorwith size \((2,708, )\).
- Parameters:
data_root (
str, optional) – Thedata_roothas stored the data. If set toNone, this function will auto-download from server and save into the default direction~/.dhg/datasets/. Defaults toNone.
- class easygraph.datasets.hypergraph.cocitation.CocitationPubmed(data_root: str | None = None)[source]#
Bases:
BaseDataThe Co-citation PubMed dataset is a citation network dataset for vertex classification task. More details see the HyperGCN paper.
The content of the Co-citation PubMed dataset includes the following:
num_classes: The number of classes: \(3\).num_vertices: The number of vertices: \(19,717\).num_edges: The number of edges: \(7,963\).dim_features: The dimension of features: \(500\).features: The vertex feature matrix.torch.Tensorwith size \((19,717 \times 500)\).edge_list: The edge list.Listwith length \(7,963\).labels: The label list.torch.LongTensorwith size \((19,717, )\).train_mask: The train mask.torch.BoolTensorwith size \((19,717, )\).val_mask: The validation mask.torch.BoolTensorwith size \((19,717, )\).test_mask: The test mask.torch.BoolTensorwith size \((19,717, )\).
- Parameters:
data_root (
str, optional) – Thedata_roothas stored the data. If set toNone, this function will auto-download from server and save into the default direction~/.dhg/datasets/. Defaults toNone.