Source code for easygraph.nn.convs.hypergraphs.hnhn_conv

import torch
import torch.nn as nn

from easygraph.classes import Hypergraph


[docs] class HNHNConv(nn.Module): r"""The HNHN convolution layer proposed in `HNHN: Hypergraph Networks with Hyperedge Neurons <https://arxiv.org/pdf/2006.12278.pdf>`_ paper (ICML 2020). Parameters: ``in_channels`` (``int``): :math:`C_{in}` is the number of input channels. ``out_channels`` (int): :math:`C_{out}` is the number of output channels. ``bias`` (``bool``): If set to ``False``, the layer will not learn the bias parameter. Defaults to ``True``. ``use_bn`` (``bool``): If set to ``True``, the layer will use batch normalization. Defaults to ``False``. ``drop_rate`` (``float``): If set to a positive number, the layer will use dropout. Defaults to ``0.5``. ``is_last`` (``bool``): If set to ``True``, the layer will not apply the final activation and dropout functions. Defaults to ``False``. """ def __init__( self, in_channels: int, out_channels: int, bias: bool = True, use_bn: bool = False, drop_rate: float = 0.5, is_last: bool = False, ): super().__init__() self.is_last = is_last self.bn = nn.BatchNorm1d(out_channels) if use_bn else None self.act = nn.ReLU(inplace=True) self.drop = nn.Dropout(drop_rate) self.theta_v2e = nn.Linear(in_channels, out_channels, bias=bias) self.theta_e2v = nn.Linear(out_channels, out_channels, bias=bias)
[docs] def forward(self, X: torch.Tensor, hg: Hypergraph) -> torch.Tensor: r"""The forward function. Parameters: X (``torch.Tensor``): Input vertex feature matrix. Size :math:`(|\mathcal{V}|, C_{in})`. hg (``eg.Hypergraph``): The hypergraph structure that contains :math:`|\mathcal{V}|` vertices. """ # v -> e X = self.theta_v2e(X) if self.bn is not None: X = self.bn(X) Y = self.act(hg.v2e(X, aggr="mean")) # e -> v Y = self.theta_e2v(Y) X = hg.e2v(Y, aggr="mean") if not self.is_last: X = self.drop(self.act(X)) return X