easygraph.nn.convs.hypergraphs.hnhn_conv module#
- class easygraph.nn.convs.hypergraphs.hnhn_conv.HNHNConv(*args: Any, **kwargs: Any)[source]#
Bases:
Module
The HNHN convolution layer proposed in HNHN: Hypergraph Networks with Hyperedge Neurons paper (ICML 2020).
- Parameters:
in_channels (
int
) – \(C_{in}\) is the number of input channels.out_channels (int) – \(C_{out}\) is the number of output channels.
bias (
bool
) – If set toFalse
, the layer will not learn the bias parameter. Defaults toTrue
.use_bn (
bool
) – If set toTrue
, the layer will use batch normalization. Defaults toFalse
.drop_rate (
float
) – If set to a positive number, the layer will use dropout. Defaults to0.5
.is_last (
bool
) – If set toTrue
, the layer will not apply the final activation and dropout functions. Defaults toFalse
.
- forward(X: torch.Tensor, hg: Hypergraph) torch.Tensor [source]#
The forward function.
- Parameters:
X (
torch.Tensor
) – Input vertex feature matrix. Size \((|\mathcal{V}|, C_{in})\).hg (
eg.Hypergraph
) – The hypergraph structure that contains \(|\mathcal{V}|\) vertices.